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Abstract. Dynamicdifferentialforms arethenaturalgeneralizationofconserved
currents. Wediscoverthe entire classfor therealKlein-Gordonfield, andfind that
eachdynamicform is equivalentto a Noetherianform, that is, a form basedon a
canonicalsymmetry.Going to the complexcase,we classify also its dynamiccur-
rents. It appearsthat someof themare definitely not equivalentto Noetherian
forms.

1. INTRODUCTION

An infinitesimal symmetry U of the action integral of a field theory gives

rise, via E. Noether’s theorem, to a differential form N(U) of degree3 which
is dynamic,i.e. is locally exacton eachextremalfor theaction.

We presenthere a catalogof the dynamiccurrentsfor the Klein-Gordonfield.

The infinitesimal generatorsof thegroupof conformaltransformationsin Minko-
wski spaceoccupya prominentplacein the descriptionof thesedynamiccurrents.

The main purposeof this catalogis to settle the questionof whether each

dynamic form ~ coincideswith or is at least equivalent in a naturalway to a
NoetherianformN(U).

For the real 1-dimensionalKlein-Gordon field, our catalogenablesus to show

that for eachdynamic form thereis a NoetherianformN(U) equivalentto 6 in a
natural way (seebelow). The infinitesimal transformation(vector field) U invol-
ved preservesthe (generalized)symplectic structureof a spacelR9 of 9 dimen-
sions, with coordinatest1, t2, t3, t4 for space-time,x for the valueof thefield p,
and p

1, . . . ,p4 for the valuesof the derivatives~p/at’, . . . , op/at
4. The space-
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-time componentof this vectorfield U has to be aninfinitesimalconformal tran-
sformation.

It canbe genuinelyconformal for somenon-linearvariantsof the Klein-Gordon

field, suchas ~, or, returningto the Klein-Gordon field proper,whenm = 0; but
when m ~ 0, then this space-time componentcan be at most an infinitesimal

inhomogeneousLorentz(i.e. Poincaré)transformation.
Moreover, each such dynamic form 6 is naturally equivalent to a current,

wherethis term meansa 3-form of this sort:

6=J’dt2Adt3~dt4—J2dt’Adt3Adt4+ ...—J4dt1Adt2Adt3,

having (evidently) just four componentswhich are functions of the t, x, and
thep~.

There are two vector fields one can makeusing thesefour componentsof 6:

a a
j(r)jl_ +...+J4—

and

a a
j(p)jl — + . . . +J4 —

Op’ Op4

wherep1 = g’1p
1. Let p be a solutionof K. — G. Replacex in j(t) by p, and the

p1 by Ocp/0t.The exactness-on-extremalsof6just saysthat then the divergence
0fJ(t) will vanish.

For j(~) a consequenceof & being dynamic is that j(~) is an infinitesimal

conformal transformationrelative to- p1 p4. This property is expressed
mathematicallyby the system

air aJ.
+ —~ =2pg~. (i,j=l 4),

api ops /

where~zis a modulusof conformality. Thegeneralsolution hereis

= — A. p/p1 —A1p’p1 + m11p’ + up~+ e.

and

where A1,..., A4, m.1(=—m11),u,e1,. . . ,e~dependonly on x and the t’s.
Indeed,A’, . . . , A~dependonly on thet’s, and



THE DYNAMIC DIFFERENTIAL FORMS OF THE KLEIN-GORDON FIELD, ETC. 3

a a
A

1—+...+A4—~A
at’

is the space-timecomponentof the U mentionedearlier. The u satisfies the field
equation.(The rn.

1 and e1 satisfy some other differential equations).For later

reference,we call A thederivedfield 0fJ(P)•

Most dynamic forms are not currents,but for eachdynamic form 6, thereis

a current e such that the difference6 — e is a sum ~ + r~ where ~ vanishes on all
extremals,and r~is exact.Thus 6 is equivalent, in this natural sense, to a current.

We then show that a dynamic current e is equivalent to a Noetherianform.
This fact doesnot extendto the 2-dimensional,or complex,Klein-Gordonfield,
wherethe facts areas follows.

Let p, t,Li be the field components.Let p1 = a’p/at’, q1 = O~ti/at’(i = 1

4). Wefind that for a dynamiccurrentin this case,

= i(’) + J(
2)~

where,j~1)is a conformal field with derived field A, j2) is a conformal field with
derived field B. J(l) is conformal in termsof p,, . . . , p

4 andJ(
2) is conformal in

terms of q, q
4. The term is bilinearin the p and q. (We give the details

below). The derived fields A and B are infinitesimal conformal transformations.
They may be different. In fact if A ~ B then the dynamic current is not equiva-
lent (in the naturalsense)to any Noetherianform.

2. MAIN THEOREMON DYNAMIC CURRENTS

We take lR
4 as our model for space-timeanduse t1 t4 asthecoordinates.

Unconventionally,but to keepin evidencethe relationto particle mechanicswe
use x1, . . . , x” as coordinatesin the spaceQ in which the field hasits values.

Thereforet1, . . . , t4, x1 x’~are coordinatesfor JR’1 x Q.
The manifold 4 in which the dynamical forms, the action form o~,. . . are

defined is the jet bundle J’(1R4,Q) [5]. A jet can be regardedas a linear map
/ from sometangentvectorspaceT’(1R4 m) in JR4to one,T’(Q, q) in Q; t1(/) =

= t’(m) andx”(j) = x”(q). Therearemorecoordinates:

(x”)
1(/) is the k-componentof the image under/ of the i-th

unit vectora/at~[cfr. 1,8.1],k = 1 n.

WhenJR
4is replacedby JR’ then (xk)

1 is the familiar ~

A 3-form 6 inour 4 will be calleda current,or of currenttype, if

(2.1) 6 =Jld
2~’1~J2d~’1+J3di24~J4dl23,
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where d2~meansdt2A dt3A dt4, etc. We will omit the wedgesin all cases.

We will often write & = J’d2~-. . . ,meaning(2.1).

In the real n-dimensional Klein-Gordon field, Q = IR”; and the extremalsare
the solutionsof

(2.2) —g’1 . . = m~~k k = 1, 2 n.

at’ at1

A LagrangiandensityL for which (2.2)arethe Eulerequationsis

(2.3) L = — ~ [gui(xk).(xk)_rn2{xk}2].

Caution: Here {x”}2 is x~’squared,and not perchance(x”)
1 with its suffix

i raised by the use of g1
2• We will do that index raising very often, however.

We will eventually presenta 4-form a (in Section 8 below) having the same
extremalsas (2.3). We go partof thewaynow in orderto introducesomefurther
notation.

We reducethe degreeof thisLagrangeanL by introducingnew variables~ and

x~’,arriving at a new Lagrangean

= ~ Egiix/cx~_m2xkxk]+ ~p~[(x’~)~ —xc]

which is linear in the derivatives(x k) and hasthe sameextremals[1, 3.4]. We
take the further step [1, Sec.5] by restrictingL* to thesubmanifolddefinedby
(the Eulerequations)

(2.3.1) g’1x7—p,~=0

obtaining

L

where

-~- ~I[pikp~+m2xh1x1d].

Thishas thesameextremalsasL. . .

When n = 2 we simplify thenotationby lettingx1 = x,x2 =y,p~=p’,p~= q’.
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So

~

(2.4)
= —H + p’(x)1 + q’(y)1

where

1 1 1
(2.5) H=—p1p’+—q1q’+—m

2(x2+y2).
2 2 2

NOTE: The Theorem 2.6 and thoselemmasused in its proofrequire only that

1 1
(2.5.1) H= —p

1p
1+ —q

1q
1+h(x,y).

2 2

The extremalsof (2.4) are submanifoldsof somelarge space,but they lie in the
submanifold defined by (2.3.1) where x,y, t1,. . . , t~,p

1,.. . ,p4,q~ q4
are coordinates.Thesehave the same transformationpropertiesas the original
x,y, t

1,. . . (x) , (x)~,(y)
1,. .. , (y)4. Thus the extremalscanbe identified

with submanifoldsof J
1(1R4,Q) whereQ = 1R~,and p

1 takenas an abbreviation

for (x)1. The currents (2.1) are 4-formsin J’(IR’
1, Q). The componentsP are

functionsof the 14 variables.
A final notation. Sometimesit will help to denotex by t5 andy by t6. A sum

with Greek indices shall be understoodto go from ito 6: a~t~”=a,t’+ . . . +

+ a
4t

4 + a
5X + a6y. Wealso usep~andq~and p5 = — 1,p6 = 0, q5 = 0, q6 = — 1.

We treat first the real 2-dimensionalKlein-Gordon field becausethe compu-
tations can be more easily adapted to the 1-dimensionalcase (sec. 9 below)
than the otherway around.

2.6. THEOREM. Themostgeneraldynamiccurrent

is obtainable as follows. Selectfunctions A’ A
4,B’ B4 which depend

only on t1, t2, t3, t~and functions u, v which dependonly on the t’s, x, and

y suchthat

OAk aA
2 1 OA’ Ou

(2.6.1) + — =
2~~Q— + —

Ott OtIc 2 at’ Ox

OBk OB, 1 OB’ Ov
(2.6.2) — + — = 2~~Q— —- + —

Ot’ Otk 2 Ot’ Oy
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Ou Ov
(2.6.3) — + — = 0.

Oy Ox

Selectfour functionsG’, G2, G3, G4 dependingonly on t1 t4, x, y such

that

OG”
(2.6.4) — =_uk_AkH

Ox

0 G”
(2.6.5) =_v~~_BkH

ay

0 G~’
(2.6.6) — = uH + vH

X Y

where = OH/Ox, etc.
Selecta 2-form ~in thevariablesx, y, t, and consider

(2.6.7) r = Gld2M_ G2d1M+ G3 d’24— G4 d’23 + d~.

Define C~(=— C~’~= CM”)’) by

(2.6.8)

where this sum is extended over those (X, p, v, p, a, r) for which X <~z<v,
p<a<r. Heree~=+1,—1,Oaccordingtowhether(A,~,...,r)jsan
even, an odd, or no permutation of(1, 2,. .. , 6).

Thenlet

1 1
(2.6.9) J1 = -_A1p,p1 —p’A

1p’ + —B’q,q’ —q’B1q’

+ up’ + eq
1 + C’~’p~q~,.

Foran example,seeSection7 below.
Wenow presentthreelemmaswhichhelpin theproofof (2.6).

2.7. LEMMA. The 3-form (2.1) is dynamicif and only there exist ~sk(k= 1, 2)
such that

Of OJ
(2.7.1) —i + .—.~. = 2p1g,,,~,

Op Op
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Of OJ~
(2.7.2) + — =2iz2g~~,

Oq Oq

and

Of’ OH Of’ OH Of’ OH OH
(2.7.3) + —~ — + —~ — = — + —.

Ot’ Op’ Ox Oq’ Oy Ox

2.8. LEMMA. The J satisfy (2.7.l)and (2.7.2)if andonly if

1 1.
(2.8.1) f~ = — A’p~p’—p’A

1p’ + —B’ q1q’ —q’B1q’

+ C’
1” p

1q~,+ m
12p

1 + n’
2q

2+ up’+ eq
1 + w’

where

(2.8.2) these variables A w dependonly on x, y, and t (meaning

(2.8.3) — rn’2 = m21, n’1~= — n~

(2.8.4) C” = — C1l~ =

2.9. LEMMA. SupposethatP satisfiestheconclusionof (2.8).Let

C’1’5 = ~fk

C~~’6= — rn1~’

C’56 = wi

Then (2.7.3)will hold if andonly if

(2.9.1) AkQ +A
21’= 2g1’e(_ A~

(2.9.2) B1’2

OA’ OA’ OB’ OB~
(2.9.3)

Ox Oy Ox Oy

Ou Oc
(2.9.4) — + — =0

Oy Ox
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O C xk5
(2.9.5)

Ot~~ y

OC~
6

(2.9.6) = u~’ + AkH
Ot)’

0CAS6
(2.9.7) = uH + uH

Oy” X Y

O C “
(2.9.8) = 0.

at’

Here AkQ means OA
1’/at

2, where of courseA
1’=g1’~A

m, etc. Similarly, v”

meansgkmau/atm. We recall that Xis summedfrom 1 to 6, and t5 =x, t6 =y.

H~isOH/Ox.
Considerthe case

(2.9.9) h(x~j-)=— m2(x2+y2).
2

When m r~ ~, the the equations (2.6.1)- (2.6.6) force the right hand sides of

(2.6.1, 2.6.2) to be 0, therebylimiting A and B to be Poincarëvector fields.
On the otherhand,when m = 0, and two arbitrary conformal vector fields A

andB (see6.1) are given, then u, u, G’, . . . , G~canbe found satisfying(2.6.1) -

-(2.6.6).Onemaytakeu=(—X+a
1t’)x,u= (—p+b1t’)y,G”=—1/2a”x

2—

— 1/2 b1’y2 andA as in (9.3.7) (j.i and-b= 0), B analogouslyfor a properly con-
formal solution.

3. DEDUCING (2.6) FROM THESE LEMMAS

We first assume6 is dynamicandwork our way to therelations(2.6.1)(2.6.8).
From (2.7) and (2.8) we have (2.8.1)-(2.8.4),(2.9.l)-(2.9.8).From (2.8.1)

and the definitions of the C’s, we have (2.6.9). Properties(2.6.1) and (2.6.2)

are (2.9.1) and (2.9.2) while (2.9.3) implies that theA’s andB’s dependonly
on the t ‘s.

Sincewe are proving the converseof the statementof (2.6),we defineF using
(2.6.8). We must deduce(2.6.6,2.6.3 - 2.6.5) as well as that thoseG’s depend
only on t1 to t6.

We abbreviateOC~/att by ~ and we abbreviateaC~”/at” by ~
From (2.6.8)weobtain
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(3.1) dl’ = C~56d’~3~— C~)”5 d~’~+ C~’6d2~5

+ C~d1~—C~26d’M5

— C~35d12”~+ C
7~~d’

245

+ C~45d’2~—C~’16dl235

±termsof the form C~”d”56.

Theselasttermsare0 by (2.9.8).Hence

ddF — C~’56dl2MS + C)’56 d’2~6— C”5 d12~+ C)”5 d2MS6
— AS A6 xl AS

+ CX16 d12~5+ C)”6 d2M56— C)’~d’2~
Xl A6 X2

+ C)’~~~~2MS— C)’35 d~2~’

— C)’45 d’23”6 ,-,)‘46,~~2345

+ A3 A4 + A4

Here we have written down only those terms with dl2M5, ~ and d2~56.
The coefficientof the lastis

C~5+ CAl6
AS A6~

Sincethis is 0 we have

OC”6 ac)’5’A = A

Oy Ox

Thusthereis anF’ dependingonly on t, x, y suchthat

OF’ OF’
C~6— ç’ASl —)‘ — , )‘ —

Ox Oy

We obtainF’,F2, F3,F4 suchthat

OF” OF”
C”6 — — ç’XSk— —)‘ — , )‘ —

Ox Oy

The coefficient of dl2M5 is

C~6+ C~6 or C~6+ —~ (OFk)

Now this is zero,so
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0 OF”
— C~56+— =0.
Ox Otk

Thisis alsotrue with x replacedbyy, so

OF”

(3.3) C~56+ —.~ = functionoft only = p(t).

Now define

F = F’ d2~’— F2 dlM + F3 d124 — F4 d’23,

andcomputedF. Using(3.1, 3.2) and(3.3) oneobtainseasily that

dF= — dl’ + p(t) d~2M.

Hence I’ = — F + d~.Putting F = — G we have(2.6.6), and also that the G ‘s

depnedonly on x, y, andt.

We cometo (2.6.3).

OG” OFk
— =— — =—C~6=—u1’—A1’H
Ox Ox

by (3.2) and (2.9.6). This establishes(2.6.3). The remaining(2.6.4,2.6.5) are
derivedin the sameway. Hencewehaveproved(2.6) in the onedirection.

For proving the other direction, we assumethat theseA, B,... mentioned

in (2.6) are given with the propertiesenumerated,and we mustprove that & is
dynamic.

We are given that (2.6.7) holds.We~computedl’ and use(2.6.4- 2.6.6).This

tells us (2.9.5 - 2.9.8). The assumptionsin (2.6) aboutA,B, u, v give us (2.9.1 -

2.9.4).Thenby (2.9)we obtain (2.7.3).
We are also given (2.6.9).We definern, n, w asin (2.9);and this implies (2.8.1 -

2.8.4). Thus we have (2.7.1) and (2.7.2) also. We deducefrom (2.7) that 6 is
dynamic.

In the courseof constructinga dynamicform 6 accordingto therecipeof(2.6),
a 3-form ~ in the variablest(= t’, t2, t3, t4), x, y is selected.This ~doesnot have
to be relatedto theotherquantities(A’, . . . , G4).

3.4. PROPOSiTION. Let 6 be a dynamic form involving a certain ~. Let 6’ be

anotherconstructedwith the same A1, ... , G4 but someother ~, say ~‘. Then

6’ — 6 d~’— d~modulo X, Y

where(see 7.3below).
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(3.4.1) X = dx —p~dt’

(3.4.2) Y= dy —q, dt’.

Thus 6’ — 6 is dynamically null (see § 9). In otherwords,the arbitrarinessin

~ affects & only by a summandwhich is dynamicallynull. To provethis, weneed
only takeA’ = .. . = G’~= 0 andshowthat the resulting6 has

&ssdE modulo X,Y.

For example, let d~= d1~.Then d~= — C~d1~and C~= — 1 and C)’~”=
= 0 for{X, M, v}~{3, 4, 6}. Soonlyf3 andJ4 arenon-zero.

f3 = C3~’p~q~,= —p
4q6+ p6q4 = P4

= C~”p~q,,= C
4~p

3q6+C’
43 p

6q3 = —p3.

Then & = p4d~
24+ p

3d’
23 = (p

3d
3 +

=(p
1d’ +p2d

2+p
3d

3+p
4d

4)d’2=(dx—X)d’2

= d12dx —Xd’2 = d~—Xd’2 d~modulo X.

There are two othercasesdE = d2~andd4ss.In thelastcase,6 = (dx — X)(dy —

— Y) d4 d4dx dy modulo X, Y asthe reader may verify.

4. PROOF OF 2.7

Let � be any 4-form in our IR’4 and let U,, U
2, U3, U~be four vectorfields.

Theevaluationon of e on U, ® ... ® U~will be denotedby

(e;U1, U2, U3, U4).

It canbe evaluatedby forming U4 I e, U3 I U4 1�,.. ., U, I U2 I U3 I U41� =

= (e; U1, U2, U3, U4).

If U is a vector field, U = —~-~ + V -~— for example, then U[f} standsfor
Of Of Ot Ox

—r + V — , andso forth.
Ox

For each i let

0 OH 0 . 0
(4.0.1) U. = —. + — — + —.

Ot’ 0p~ OxK ‘

HereHmightbe as in (2.5), but the U/K arejust parameters.

4.1.LEMMA. Let 6 be a 3-form in JR’
4. Then 6 is dynamic if and only if
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(d6, U,, U2, U3, U4) is 0 wheneverthe parametersU/K makevanishall the expres-

sions

[OH] [OH
(4.1.1) U1’j—I----U21--—-—

[Op,~j LOpj~

and

OH
(4.1.2) U/~+ —i (sumoni;M=1,2),

Ox

providedthat therankoftheHessianmatrix

0211

is at least6.

Proof A referenceto [2, 6.2] and simple computationsof X)’, dX)’, (see [2])

shows that the vanishingof (4.1.1) and (4.1.2) is a necessaryand sufficient
condition that thereshould be an extremal tangentto U1,. . . , U~. So let 6 be
dynamic.Then if (4.1.1,4.1.2) are 0 then (d6; U,, . . . , U~)must be 0. If 6 is

not dynamic then (d6; U,,. . . , U~) will be not 0 for some four vectors

U,,. .., U~which are tangentto an extremaland for which (4.1.1,4.1.2) will
thereforevanish.

The 6 in this statementgeneralizesto 3n for n * 2.
For thecaseof a current6 (3.1),(6; U,, U2, U3, U4) takeson the form

(4.1.3) U~[J
1}.

ForHasin (2.5),the expressions(4.1.1)takethe form

(4.1.4) U
1’~— U,~

where

Uk,M = U~~gJQ.

HenceU~[J’] is a linear function (call itf) of thevariablesULM (or if preferable,
the UkQM) which vanisheswhen certain other first degreepolynomialsin those
variables vanish, namely the (4.1.1) and (4.1.2). Denote the latter briefi by

g1,. . . , ~ A simpleconvexityargumentshowsthat thereare constant(that is,
expressions independentof the U/CM) c, CN such that f= c1g1 + . . . +
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+ ~ We formulatethe result.

4.2.LEMMA. Let 6 be as in (3.1) and H, as in (2.5). Then 6 is dynamicif and

only if thereare quantitiesL~J2,j.f~independentof the U& for which

(4.2.1) U[P] = L~)(UkQM— ~1QkM~ + ~U/M + m2xM)

and

‘422~ L”2——L21’
M M~

We do intend a sum on M, i, k, 2 in (4.2.1). Item (4.2.2) is a trivial but con-

venientembellishment.

If one setsequal to 0 all the U/,~.,then (4.2.1)reducesto (2.7.3). If one equa-
tes coefficientsof U,’K in (4.2.1), then one obtains

Of
— K
—~ g,

1.
UPK

Thecoefficientsof U2
1K give

Of
2 Of,

— + — =0.
04 04

Here we assumethe metric diagonal.Thus (2.7.1) is established.By interchan-
gingp andq, we also have(2.7.2)and theproof is complete.

5. APROOFOF2.8

Let m ~ 3.
Thesignificanceof (2.7.1)all by itself is givenby the following.

5.1. THEOREM. Let g,, be a symmetric, regular m x m constant matrix. Let

.J,~,be differentiablefunctions defined in JR
tm such that in termsof car-

tesiancoordinatesz ~, . . . , zm

Of. 01
(5.1.1) —4 + —4- =2~zg.. (i,j= 1,.. .,m).

Oz1 Oz’

Then there exist constantsa., rn,
1, e.andu wherei, / = 1,. . ., m; m~1= — m1, and

(5.1.2) J,.=1/2a,z’z1—a1z’z,+m,1z’+uz1+e,.

Here is to be interpretedby the usual rules for raising and lowering indices.
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Conversely,(5.1.2) implies (5.1.1)with

(5.1.3)

Theproofof thisconverseis easyandneednot bepresented.

Theproofof (5.1) beginswith a lemma.

5.2.LEMMA. If (5.1.1)holds with rn >2 then thepartial derivatives

02 ~

Oz’ Oz’

all vanish.

Proof We assume,as we may, that g is diagonal. From f,
3 + J3, = 0 we get

+ = 0. SinceJ33 = ,ig33 we have

(5.2.1) J133 + ~i,g33 = 0.

Of course also + p2g33= 0. From this we have M2, g33+ + J,332+

+ ~12g33= 0 or 2g33~12= — (f21 + f,2)33which is 0. Thus = 0.
Quoting (5.2.1) again gives g33ji1, = —J,331= (—J~,)33= (—~zg11)33whence

— ‘233

g11 g33

from which follow

1133 — 1122 1122 — 12,,

g33 g22 g22 g11

So is 0 and(5.2) is proved.
- Sonow weknow 12 hasthe form (5.1.3).Define

K. = — — a, z~’z~,+ a~zz1— uz~.

It is easyto seethat

OK, OK.
+ =0.

Oz
1 Oz’

These equations(due to Killing) characterizeinfinitesimal isometries (in the

of g
11). From this we get the rotational part m~1and the translational part
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K, = rn.
1 z

1 + e,

and(5.1) is proved.

The equations(5.1.1) characterize,and the formula (5.1.2) represents,aninfi-

nitesimal conformal transformation.Thus (5.1) is an infinitesimal version of
Liouville’s theorembecauseit is easyto show that a vector field like (5.1.2)

is an infinitesimal similarity conjugatedby an inversion(all understoodin terms
of thegiven metric).

Let

(5.3) ~

Thenthe quadraticpart off~’(notethe raisedindex)is

(5.3.1) — G~,aQz1~zS.
2 ~

Whenz is p or q we will abbreviate

(5.3.2) — G~rspTpS= — 6~p~p’—p1’p
2 by P~

and

—Gk TS ky
2

We begin the proofof(2.8). From (2.7.1)and(5.1)weobtain

(5.4) J= —a1p1p’—p,a1p’+m,~,p’+12p,+e,

wherea, m, u, edepend only on t, x,y, andunfortunately,q.

Let 0 be the operatorg”
2O2/Op”Op2. Applying it to both sides of (2.7.2)

shows that DJ,~,also satisfies(2.7.2) although with a different ‘2. Now 0 =

= 2a~(the 2, by the way, is 2 less than the dimensionof spacetimein general).

Thenwe can apply (5.1) andobtain

a” = Q~b2+n” q. + vq~’+f”

where theseb, n, v, f dependonly on t, x, y. Therefore

= P/C Q~b2 + a cubic in p andq.

By symmetry,
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= Q~P~b ~+ a cubic in p and q.

Hence P/C Q~b ~= Q/C P/’ c~, from which
piGk b~—G’ P1’c’

k Qrs — krs Q

For r = 1, s = 2, i = 3 one has ~ = 0, so P~G~,
2b ~= 0. Thus P,~h” = 0

whereh’ = b2, h
2 = b,, h3 = h’ = 0. So 0 (P~h”)= 0, andh = 0 whenceb, =

= 0. In the samewayeachb’ = 0, andso(5.4) holdswith

(5.4.1) a”=n”1q
1 + vq”+f”.

5.5. LEMMA. Thesen’s and v’s are 0.
Note: Theseare not then’s and v’s of (2.8.1).

We beginto provethis by a simpleobservation.

5.5.1.PROPOSITION.e1, . . . , e4 (see 5.4) satisfy (2.7.2)with a suitablep, andso

(5.5.2) e’ = ~ + wq’ + p’

wheret3”,. . . , cp’ dependonly on t, x, y.

5.5.3.PROPOSITION.For each 2, m
1~+ ug’2(i = 1 4) satisfies (2.7.2)

with a suitable11 andso

(5.5.4) ~

wherethesecoefficientsdependonly on t, x, y.

We now sketchtheproofof(5.5) which is merelyan exercisein algebra.

Insert (5.5.2) and (5.5.4) into (5.4) giving an expressionfor 3, of the form

where the dots representthe coefficientsof (5.5.4).We imposeon J the condi-

tions (2.7.2) and it tells us that for i * h, one hasPI’Nkh + ~ = 0, where
Nkh = nkh + ~ This gives G~

2Nkh+ G~’12N~~= 0 which for i = 1 and h = 3
showsN23 = 0. Assumingg diagonalgives us n23 = 0 or n = 0. Thentaking i = 1,

h = 2 gives v = 0.
It appearsthat ‘I’1(p, q, 0, 0,f,...) has no ppq terms. By this we mean

termslike

const.

Hence we may deletethe ppq terms. The result is that 3, has the form (2.8.1).
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We still have to show (2.7.1,2.7.2). For the momentwe candiscardthe u and

v termsandjust decomposethe rn’
2 into symmetricand skewparts

m12 =cw~+13~~.

A simple argumentshows that i3’~ is a scalarmatrix. A similar argumentworks
for n and C. Thus (2.7.1,2.7.2) implies (2.8.1 -2.8.4).The oppositeimplication
is trivial. (2.8) is proved.

6. PROOF AND DISCUSSION OF 2.9

Our proof of (2.9) consistsin inserting(2.8.1) into (2.7.3), and breakingthe
resultup into homogeneousparts.

Looking at the ppp terms gives OA/Ox= 0. Looking at the ppq terms tells
one that OA/Oy= 0. Thus we have(2.9.3).

Thepp termsgives (2.9.1).The pq termsgives two results:Oneis (2.9.4)and
the otheris (2.9.8).

When equating first degree or zero degreeterms, the form of’2’ given by
(5.1.3)comesinto play.Theptermsgives (2.9.6).

Theq termsdo notgive thedual thep terms,becausewearelooking at (2.8.1)
andnot (2.8.2).Theq termsgive (2.9.5).

The termscontainingneitherp nor q give (2.9.7).This endsour demonstration

of (2.9).

Oneshouldappreciatethemeaningof (2.9.1 - 2.9.3).

6.1 PROPOSITION.A and B are infinitesimal conformal vector fields in space-

-time. Theyare independentof thefield (x, y).

(2.9.1) is an instanceof (5.1.1), so the A. must beoftheform(5.l.2)wherethe

coefficientsare constants(and z is replacedby t. The coefficientsappearingin
the (5.1.2) representationof A, shouldnot be confusedwith the a, m, u, e ap-
pearingelsewhere,suchas in (5.4).The latterneednotbe constantandgenerally
dependon t, x, y).

The emergenceof theseconformal vector fields A andB suggestswondering
if such fields are (infinitesimal) symmetries of the Klein-Gordon fields. We

considerthis in Section9.

7. SOME SPECIFIC DYNAMIC FORMS

7.1. PROPOSITION. Let H be as in (2.5). Selecteight constantsA’,... , A4, B1,

B’1. Let
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(7.2) f”= — Akp,pi_pkAip,_ — rn2x2A”+ —B”q
1q’

_qkBiq. — — m
2y2B~’.

2

Thenf definesa dynamiccurrent.

To see this, let G”= — m2x2A1’— m2y2B”. This satisfies (2.6.1 -

- 2.6.6). It makes C”56 = G” and CXMU= 0 for X, II,V not permutationsof k,

5, 6, Thisproducesa J asin (7.2).

Thesedynamic forms are the specimenswhich will providethe counterexample

to equality(1.3).
We repeatthe definition of Hamiltonic forms, changingU to — U as is some-

times done. p is Hamiltonic if p=~+UIa where ~I=—C~a. Then dp=

=di,L +d(UIa)=—[UIda+d(UIa)]+d(UIa)so

(7.3) d~p=—UIda.

If A is a Lagrangeandensityof thereducedtype(as(2.4) is), say

A =—H+p’(x),,

thenA hasthesameextremals as the4-form

(7.4) a = —Hd’2~+ dx(p’d2~—p2dlM +...).

This is easily seen by comparing the Euler-Lagrange-Hamiltonequations [2,

p. 7; pp.21 -22].
An almostinfallible mnemonicdeviceis that

a = L d1~+

where

(7.5) = dxK — (x’~)
1dt’

andF’ F
4 aresuitable3-forms.

Theapplicationof this ideato theL - (2.4) gives thea in (8.1) below.
Let us call a dynamicform & remotelyHamiltonic if it is a sum

(7.6)

where ~pis Hamiltonic, ~ vanisheson all extremals,and ~ is any 2-form. Then
thequestionabout(1.3) is answeredasfollows.
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7.7. THEOREM. The dynamicform (7.1) is not remotelyHamiltonic if A *B.

8. PROOFOF7.7

To prove this, we must find the most general3-form ~ which vanisheson all
theextremalsfor

(8.1) a= —Hd’2~+dx(p’d2~—p2d’~+...)

whichcorrespondsto (2.4) (see(7.4)).
We assumeH has the form (2.5) (actually, the next lemma remains true if

them2(x2+ y2) is replacedby any analyticfunction of x andy).

8.2. LEMMA. Let ~ be a 3-form which vanisheson eachextremalfor (8.1). Then

= (dx — p, dt’)4 + (dy— q,dt’)4’ +

+ dp
1dt’(a

1dp
1 + b’dq1) + dq,dt’(c’dp1+ e’dq1)

where ~I, ‘I’ are 2-forms and a
1,. . . , e1 are arbitrary functions. 4 does not

contain dx, and ‘I’ doescontain dy.

Such a form certainly does vanish on every extremalbecausedx —p, dt’,

do [2, p. 15].
To prove (8.2) we begin with an arbitrary 3 - form ~. We can certainly

replaceeachdx by p
1 dt’ and dy by q, dt’ obtaining ~‘ suchthat ~‘ — ~ vanishes

on all extremals.Thenwe will show that ~‘ hasthe aboveform with 4 = ‘I’ = 0.
We thereforeassume

= Z’d
2~— Z2d’34+ Z3d’24— Z4d’23

-~ dpLZ~~d1”+dt’Y~dp~dp~

~ ‘d ‘d ki/k PL ~M ~N’

whereZ,~
1= — Z~k~ = — = — ~, etc.

Here p1’ is whatwe abbreviatedby p’ andp~is q’.
If ~vanisheson all motion then

(8.2.1) (~U~,(~,Uk) = 0

whenever(4.1.1) holds, and U1, U1, Uk are any threeof the four vectorfields
(4.0.1). (When helpful, we may forget about (4.1.2) becausethe fourth vector
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field canalwaysbeadjustedto insure(4.1.2)withoutaffecting(8.2.1)).A routine

calculation(includingsomeraisingand loweringof indices)showsthat

(~U,, U2, U3) =f= —Z4+ Y

where

(8.2.2) Y= 6 U~U~SU~’~W~YJ~J+

+ 2UK UL Y
m” + 2UK zmlm 2n 3KL im K23

+2U~~UL Ym” +2U” Zm
2m 3n 1KL 2m K31

+2UK U’~ Ym?~+2U” zm3m in 2KL 3m K12~

The readerwill note that we wrote U~insteadof UK,
1 as in (4.14). This case

of index raising is purely typographical,but moving the i or / involvesthe g,,,,.
So— Z4+ Y= 0 whenever

(8.2.3) U~=U~.

HenceZ4 mustbe 0 andso

(8.2.4) Z,=Z2=Z3=Z4=0.

Y doesnot contain U~1.Sothe U~in Y arenotconstrainedby (8.2.3).There-

fore -

(8.2.5) Y=0 if (8.2.3) holdsfor i,/=l,2,3.

The samething is true for the linear termsin Y. In fact, for eachK the linear

terms mustadd up to 0. The coefficient of ~ is 42~, so Z~3= 0. We also
see

UKZ
2 +U”Z’ —012 K23 21 K31 —

1, 72 —Z’
w ence K23 K13.

Here is a simple fact. If J’7,,~are definedfor i, j, k (ranging from 1 to F, say)
and = ~ — = 0 when i, j, k are all distinct (no sumon i or / here)and

if = — then

6~

Therefore

‘826~ —5 —S’vI K/k fvJ(~ k K/~

This holds for i, /, k ranging from 1 to 4 becausewhichever integeris not
amongthe i, I, k couldbe given therole playedby 4.
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Apply the operator0/0 Uj’4 to the quadraticpart of Y. Dismissinga factor of
2 we obtain

(8.2.7) U~n~ + U’~mY~= 0.

The coefficient of U~mustbe 0, so = 0. Of coursethis implies that, ~1~’JL=

= 0 wheneveri, /, k are distinct.
Letting U32 = U23 in (8.2.7)we note that thecoefficientof ~ is

v
43 v24 —

3JM+ 2MJ

Thus ~ = Y~
1or Y~

1~= for any i, /, k (no sum). As with (8.2.6)wecan

say

‘828~ Y’I —6’ f —&~ ~/ kJM k~JM kYJM~

By taking 0/0U~and then0/0 U’~
1 of the cubictermsoneobtainsU~mW~7J=

= 0 so that all the W are 0. Assembling~, using (8.2.6)and(8.2.8)onecaneasily

show that it has the form claimed in (8.2), except for the claim that ‘I need
not containdx, but this is easyto seeandwethusendour proofof (8.2).

We will prove (7.7) only in the caseof three-dimensionalspace-time.Wewill
also let the rn in H be zero. (If (7.7) is provedfor such a current, then it must

also betrue for m ~ 0).

Denotethe differential form derivedfrom (7.2)by i,D:

i~=f’d
23—J2d’3 +J3d’2.

Let -

= cxdp, dt’ + L3dq
1 dt’+

+ (dx —p,dt’)(F’dj~,+ G

1dq

1 + Hdt’ + Idy)

+(dy—q1dt’)(J
1dp, +Ktdq

1 +L1dt’ +Mdx).

This ~ is by (8.2) the most general 2-form which vanisheson all motions. We
must show that we cannothave (7.6) unlessA = B in (7.2). Supposetherefore
that (7.2)holds,or ratherthat ~b— p + ~= di7. Then

(8.3) d./i+UJda+d~=O

whereU is asin (7.3). Specifically, take

3 0 0 0 0
(8.4) U= — +D~’ — +E” — + v — + w —.

Otk 0~k Oqk Ox
Then

(8.5) d~i= [(A’p~ —A’p’ )dp1 —A’p1dp
1+ (B’qt —B’q’)dq

1 —B’q1dq’]d~ +
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Here the + + are two more terms obtained by permuting the indices 1, 2,3
cyclically. Thisnotationwill be usedoften.

From

= — (p.p1+ q
1 q

1) d’23 + dx(p’ d23 + +)

+ dy(q’d23 + +)

and(8.4)we obtain

(8.6) U Ida = — (D’p
1 + E’q1) d’

23 +

+ (D’dx +E’dy— Vdp’—Wdq’)d23+ +

+ (p~dp’ + q
1 dq’)(C’d

23 + +)

— dx[dp’ (C2d3— C3d2) + +]

— dy[dq’(C2d3— C3d2) + +1.

Finally

(8.7) d~= (da—F’dp~— G1dq
1—11,dt’—Idy) dp, dt’

+ (dj3 —J’dp1 —K
1dq

1 —L1dt’ —Mdx) dq1 dt’

+ (dx — p, dt’)(— dF’ dp1 — dG’ dq1 — dIJ~,dt’ — dI dy)

+ (dy — q. dt’)(— dJ’ dp1 — dK’ dq1 — dL1 dt~— dM dx).

The sum of (8,5, 8,6, 8,7) is presumably0. It will therefore still be 0 if we
replacedx by p~dt’ and dy by q1 dt’. This leaves(8.5) alone, but turns (8.6)

into

(8.6*) —{(V dp’ + W dq’) d
23 + +}

+ (p
1 dp’ + q1 dq’XC’ d~+ +)

—p1dt’[dp’(C
2d3— C3d2)+ dp2(C3d’ — C’d3) + dp3(C’d2 + C2d’)]

—q,dt’[dq’(C2d3— C3d2) + dq2(C3d’ — C’d3) + dq3(C’d2—C2d’)].

It helpsmostfor (8.7),yielding

(8.7*) (da— F’ dp
1 — G’ dq1 — H1 dt/ — Idy) dp1 dt’

+ (dj3—J’ dp1—K’ dq1—L1dt’ —Mdx) dq1 dt’

wheredx = p, dt’ and dy = q1 dt’.
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We observesomerelations:

Oa
(8.7.1) — —F’=O,

apt

Oa
(8.7.2) A3p’—A’p3+ —j~+p, — —H,—1q

1=0.
Ot Ox

The first of these, for I = 1, is the coefficient of dp, dp2 dt
2 in (8.7*), and

since (8.5, 8.6*) haveno suchterms,we get (8.7.1).The secondrelationcomes
from the coefficient of dp, dt’ dt2. There is actually someinternal cancelling
in (8.7*).

Now we returnto the sumof(8.5, 8.6, 8.7) andlook for thedx dp’ dt’ terms.
Theirsumis

I Oa OF OIL
I—C2dt3+C3dt2+ — g

11dt’— —~ dt’— —i dt’
L Ox Ot’ Op

1

OF Of 0M1
+(p

1dt
1) —~ —q

1dt’ — —i + —j jdxdp’.
Ox Ox Op

Thecoefficientof dx dp
1 d t1 is set equal to 0:

OF, OH
1 OF, Of, OM

(8.7.3) —g11——~ — —~ +p1 — +q, — — —~ =0.
Ox Ot Op Ox Ox Op

From the coefficientof dx dp’ dt
2we obtain

OF OH OF Of OM
C3 — —i — —~ + p

2 —i + q2 — — =0.
Ot

2 Op’ Ox Ox Op1

Let us interchange1 and 2 here.We obtain

OF OH OF lOf OM
(8.7.4) C3— ~ — —i +p, —~ +q,(—~— — =0.

Ot’ Op2 Ox \ Ox Op2

Now we solve (8.7.2)forH’ andsubstitute into (8.7.3).After two applications
of (8.7.1), this changes(8.7.3)to

lOf, OM 01
q,~————

1+q,—1=0.
Ox Op Op

Thus
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Of OM 01
(8.7.5) — — + — =0.

Ox Op1 Op’

Changing I to 2 in (8.6.5) and using it here gives C3 = —A3. Of course this

means C’ = —A’. Interchangingx and y, p and q we obtain also C” = —B’.
Theestablishes(7.7).

Conversely, when A = B, then (7.1) is remotely Hamiltonic. This follows

from (10.1) below.

9. THE ONE-DIMENSIONAL KLEIN GORDONFIELD

In contrast to the two-dimensionalfield just discussed,in the one-dimensio-
nal case,all dynamic forms are remotelydynamic.Before statingthat result,we

enumeratethe variousdynamic forms.We allow a somewhatmoregeneralfield,
namelythat definedby

(9.1) H=—p,p1+h(x)
2

where h is any analytic function.

It will be convenientto define a 3-form to be dynamicallynull if it is thesum

(9.2) j3+7

where jI is exactand ‘y = (dx —p~dx’) 8 whereeisa2-form.

9.3. THEOREM. Consider thefour cases

(9.3.1) h(x)=a+bx+cx2, c*O

(9.3.2) h(x)=a+bx

(9.3.3) h(x)=a+(bx+c)4, b*0,

wherea, b, care constants,and

(9.3.4) h is notasin (9.3.1,9.3.2,9.3.3).

The mostgeneraldynamiccurrentfor (9.1)is

(9.3.5) J’ d2~—f2d’~+ J3d’24 —J4d’23 + e

wheree is a dynamicalnull-form, and

- x2~ -

(9.3.6) J’ = —A’p,p’ —p’A
1p’ + up’ —h(x)A’ — — a’+ if

2 2
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(9.3.7) A’ = — a’t1t
1 — t’a.t1 + ~.t”t. + Xt’ + b’

2 ‘ ‘I

where thesecoefficientsare constants,with ~j’~= —

4I.i’~,and u = p — (A — a,t’)x.

The restrictionson theseconstantsand on the functions i~’ of t andx depend

on thecase,as follows.

b+2cx -

Case9.3.1. A’=p”t.+b’,rj’ =— p’,where
2c

p+2cp=0, X=a’=O.

~ 1k O
2p

Herep means ~— and p
1 = ~ = g at

1 Otk

Case9.3.2. No restrictionon the coefficientsof A1, but

~ipix+4aIXtiai(ti)2
L 2

(no sumon I intended);andp + 3(A —a
1t’) b =0.

Case9.3.3. No restrictionson A~,and

- a’cx F - 1 - - 1 c(A—a1t’)
— +4alAt’——a’(t’)

21, p=—
b L 2 J b

Case9.3.4. A’ = p’~ t~+ b’, and~l’ = 0.

The proof is basedon an analogueof (2.6), which we now present.We adjust
our notation so that item (9.6.1) below correspondsto (2.6.1), and (9.6.4)
correspondsto (2.6.4),etc..

9.6. THEOREM. Let S = J1 d2~— f2 d’~+ .. . —... be a dynamic current.
Then there exist functions A’ A4, u oft andx where

Oil. OA. 1 OA’ Ou
(9.6.1) The A’ dependonly t and —~ + —~ = 2g.. — — + —

Ot’ Ot’ “ 2 Ot’ Ox

thereexistfunctionsG’ oft andx such that
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OGk
(9.6.4) — =-—u”—A1’h’(x),

Ox

0 G”
(9.6.6) — =uh’(x);

Otk

thereexistsa 3-form ~in the variables t and x aswellasfunctionsC~(=— CvX,

X,~u=l,2,3,4,5)oftandxsuchthat

(9.6.8) G’d2~—G2d’~+. . . —.. . + d~= ~

and

(9.6.9) f’ = — A’p,p’ — p’A
1p’ + up’ + C~Mp~

wherep5 = — 1.

The proof is so much like that of (2.6) that it may be omitted. In fact, the

proof is much shorter because it endswhenwe get to a placecorrespondingto
(5.4).

The statementof (9.6) really correspondsto the converseof (2.6) since it

describes the most general dynamic current. But the converseof (9.6) is also
true.

To get from (9.6) to (9.3) we insert a lenuna.

9.7. LEMMA. Conditions(9.6.1,9.6.4,9.6.6) imply

(9.7.1) A” hastheform(9.3.7),

(9.7.2) u=p—ax

where

(9.7.3) a = A—a,t’

and

(9.7.4) p dependsonly on t.

(9.7.5) — = 4a

Ot”

(9.7.6) G’d
2~—G2d’~+..
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=_h(x)(A1d2M_. ..)—— (ald2M_...)+fl
2

where

(9.7.7) dii =(p1 d2~—.. .) dx + [4oh + (p — ax)h’]d’2~.

Herep’meansOp/Ot,.

An immediate consequenceof (9.7.7)is

(9.7.8) p + 3ah’ + (p — ax) h” = 0.

We give the proofof (9.7). (9.7.1) comesfrom (5.1). We now use(4.7.1) to

calculateaA”/0t~’, put it into (9.6.1) andobtain Ou/Ox=—A +a
1t’ which we

call— a. Sou = p — ax.We define

x
2

(9.7.9) ii = G’d~—. . . + h(x)(A’d2~—.. .) + — (ald2M_...)
2

and calculate d~.Using (9.6.4,9.6.5) and (9.7.7) we obtain (9.7.7). Finally,
dd~= 0 gives(9.7.8).

It may beverified that the a, A, G’ etc. are uniquely determinedby the given
dynamic form except for the i7. The dynamic form is representedonly up to

a dynamicallynull addendum.
We will take~ = 0 in (9.6.8).Then

9.8. Formula (9.4.2)will holdwith the ~?‘beingdefinedby ,-~ = 71~d~— ~j2 d’~+

+ ~3d124—ii4d’23.

in fact, if ~ = 0 then G’ d2M must be e
152~C’

5 d2M. The c-symbol is — 1 so

C’5= —G’ and the sum C”~p,~in (9.6.9) reducesto C’5p
5=C’

5(—l)=G’.
We use (9.7.6) to expressG’ in termsof ~ and this gives (9.4.2)(for i = 1, of

course,but that will suffice).

REMARK. Theorem(9.3) shows that in the Klein-Gordoncase(Case(9.3.1))the
vector field A correspondingto a dynamicform hasto be a Poincaréfield. Hence
more general conformal A do not give rise to (or originate in) Hamiltomc forms.

They are, nevertheless,symmetriesof the Klein-Gordon field [3, p. 72, (4)].
Now we prove(9.3), startingwith case(9.3.1).A resultof (9.7.8) is 3a 2c —

— a2c = 0 whencea = 0. ThusA and thea
1 are 0, andp~+ ph” = 0. Let
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2cx+ b
(p’d2~—p2d’~+...).

2c

Then

2cx + b
dii=— p~d’2~+(p’d234—.. .)dx

2c

so that (9.7.7)is fulfilled. This leadsto the ,~‘ listed.

For case(9.3.2), (9.7.8) saysp~+ 3ba = 0. (9.7.8) is the conditionthat i~can

be found andwe havepresenteda rathersymmetricalchoice.
In case(9.3.3),(9.7.8)takestheform

p~+ (bx + c)212b(ca+ bp) = 0.

Now b ~ 0 so cu + bp = 0 and p~= 0. In fact, the former implies the latter

andmakesp’ = ca’/b. It is easyto verify that

cx I a 1
p = — — (a’ d2~—. . .) + 4a I At’ — —~- (t~ I d2~—.

b L 2 J

givesa solutionto (9.7.7).
In the last case, (9.3.4), we have p + 3ah’ + (p — ax)h” = 0. Let p~=

Then p + ph” = 0. If ~ were ever non-zero, then h would be quadraticwhich
wasexcluded.So p = 0, and 3ah’ + (p — ox)h” = 0. If for anyx and t, p — ax
were not 0, the h’ would be a constantmultiple of (p — ax)3 and this was also

excluded.Thus ,~= 0 satisfies (9.7.7).

10. RELATION TO HAMILTONIC FORMS

With- the 1-dimensionalKlein Gordon field, (in contrastto 2-dimensionalcase,

(7.7))each dynamic current is remotely Hamiltonic.

10.1.THEOREM. LetSbeasin (9.6). Considerthe vectorfield

O 0 .3
U=u —+A’ — +D’ —

Ox Ot’ Op’

whereA’ anduare takenfrom (9.6.9)and

Ou OC’~’ OG.k
(10.2) D’=— — p1— — p~,—h’(x)A’+e”~ ..L

Ox Ox Ot2



THE DYNAMIC DIFFERENTIAL FORMS OF THE KLEIN-GORDON FIELD, ETC. 29

(no sum on I).

Let

= (dx —p~dt”) G,~dt’ dt’

where

— = G11, G,2 = — (A
3p4—A4p3+ Cu),

G
13=——(A

2p4—A4p2+C24),

thesignbeing thatof tile permutationofthefourindices.Then

(10.3) d6+UIdci+d~=0.

The proof is elementaryandnot too long if performedas follows. First we
write downdS and d~.Thenwenotethat

Ulda = (— uh’ —p
1D’)d’

2~

+(— udp’ ~p
1dp1Al)d2~~(_udp

2+p
1dphA

2)dl~+

+dx[(h’Ai+Dl)d2M_...]+

+ dx[—dp’(A2dM—A3d24+A4d23)

+ dp2(A1d~—A3d’4+A4d’3)

—dp3(A’d~’—A2d’4+A4d’2)

+ dp4(A’d23—A2d13+A3d’2)].

One hunts through the three expressionsfor the dp,d~ terms. The sum
is zero. The same is true for the dp,d’~terms.Neither of theserequire the
D’ in (10.2).Thus (10.3) holdsas farasdp dt dt dt termsareconcerned.

Then we look at the dx dp,d” terms. Typically, the questionis something

like

OG
g~A2+2 —~ =0 ?

Op
1

All of thesecanbeverified.
Next we look at dx d

234. Thisleadsto an equationwhich is essentially(10.2).
Finally, we examinethe d’2~term. Here we need (10.2),andthe equationto be

verified is precisely the 1-dimensionalanalogueof (2.7.3) with p1 = u —p
1A’.
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This latter is the caseby (5.1.3).

Thus ends our proof of (10.1). In spite of the complexity of (10.2),when~

is chosenas0, thevectorfield U is anaturalassociateof thevectorfield

0 0

x=u —+A’Ox Ot’

in JR4 x JR. As explainedin [7], *.induces, or can be lifted up to, a vector field

x in the bundleJ1(JR4,JR.). Our u is nothing but this lift of x. We will give the
proofelsewhere.

Could it be that 5, being dynamic, is automaticallyHamiltonic?The calcula-
tions used in verifying (10.1) canbe adaptedto showthat this is not so.

10.4.PROPOSITION.A dynamicS neednotbeHamiltonic.

To prove this first ((decouple>> the U from the S by putting bars over the
componentsof U. SupposedS + UI da = 0. The dp,d’~equationwhich we
have askedthe readerto constructnow reducesto — — p1A2 = 0. If this
is true then surely also —J23—p3A2= 0 and thereforep3J’2 =p1J23. This

relation implies A’ = A3 = 0 and so of coursealsoA2 = A4 = 0. This need hardly

be.The 1-dimensionalanalogueof(7.1) is anexample.

11. DYNAJ4IC FORMSWHICH ARE NOT CURRENTS

Forthe real1-dimensionalKlein-Gordonfield we cansay the following

l1.1.THEOREM. Let S be a dynamicform. Then S differs from a dynamiccur-
rent by a dynamicallynull form.

11.2. COROLLARY. Let S be a dynamicform. Then S differsfrom a Hamiltonic

formby a dynamicallynull form.

Sketch of proof of 11.1. Let S be any form. Replace dx by p, dt’ and thus

obtain 5’. Then 5’— S is dynamically null. Thus we may supposethat S hasno

dx terms.If it is not a current then there must be terms like

dp, dt’ dt”, dp, dp

1 dt”, or dp1 dp~dpk.

The proof begins by showingthat, if S is dynamic and has terms dp dp dp,
then one can find a null-form p such that S + p has no such terms. This step
is rather easy.
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Let

S =L1dp2dp3dp4—L2dp1dp3dp4+L3dp’dp2dp4

—L4dp’dp2dp3+M
2

whereM2 is the sumof the termswith atmost two dp’s. Then

dS=Adp’. ..dp
4+M

3,

whereA = OL’/Op’.
Now we form (dS; U,, U2, U3, U4) ssfwith the intent of using (4.1). In fact

f= X�~2U’, U~U~U~÷f3

wheref3 hastermsat mostof degree3 in the U~.
Let us replace U~by — h’(x) — U~ — U~— U~,and also replaceU,1 by Ufi

wheni >1. Thenf shouldbe 0. It is easyto seethat

g =

shoulditself vanishwhenU,1 = U~,andU~= — U~— U~— U~.We take

0
2g

=—2Ae.,. U/Uk.
OU’)2 / ~

This shows A = 0. This meansthat L’dp2dp3dp4—... is exact when the t’s

andx areconstant.Sothereis a 3-form(3 suchthat

d(3=L’dp2dp3dp4— .. .

whereM
2 hasthe samemeaningasbefore.Thus 5’ = S — d(3 or 5’ — 5 is dynami-

cally null.
Hencewe shouldnow turn to the casewhere S hasat most dp dp dt terms.

To savespacewe leave this caseto thereaderand turn to thecase

& =N,1~dp’ dt’ dt”+M0.

It gives an adequateideaof thetechnique(suchasit is).
We canassumeN,1~= — N,~1.Then

ON..
d&= —v dp~dp

1d~”+M,
Op

from which

ON..
(dS, U

1, U2, U3, U4)ssf= “ e~
11’U~U~,+f

1
op
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wheref, meansthe termsof degreeat most 1 in the U’s.

We replace U~by — U~— U~— U~and U11 by U~for i >j as before, and this
surelymakes

ON..
(11.3) g= ‘~‘ tab/k U

2 U~,a

identically 0. Again,we examinetheequation

O2g

(OU~)2 =0.

It says

ON
423 — ON,23 — 0

Op’ Op
4 —

This shows that for each i, / with i “1=1 there exists an N,
1(= —JV~,)such that

ON..
(11.4) N~,1=___ff

Op

wheneverthese3 indicesare distinct.
Now we return to (11.3) andwork out

O
2g

=0.
OU’ OU

1 12

Using

OUQ

OU,

2

this equation reduces to

ON423 ON~3 ON4,3 ON1’3
—-———=0.

Op2 Op
4 Op

1 Op
4

ON ON
HereN~

3= g

2’ N,
23asusual,and — = g

2’ ~—~-

P2 p
We canuse(11.4) twice here, since, for example N

423 = ON23/0p4and obtain

0:4 {...}=0
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where {. . . } is theleft side of thenext equation.

ON ON
(11.5) —p +N~3+ ~ —N~3=f(123)

0p2 Op,

wheref(123)meansa function of p1 , p2, p3 (besidedthe t andx).
Denote

ON
—n —N~3by A~
api

anddefine A7 analogously.So

A1
13 —A~3=f(l23).

Of course, also A~3—A,’3=f(413) and A~3—A3=f(243).Adding these
three we get

0 =f(123) +f(4l3) +f(243).

Setting p
4equal to someconstant gives us

f(123) =f(23) —f(l3).

Hence

A~
3—f(l3)—[A~3—f(23)]=0.

Define N,
3 = N13 + any integral of f(l3) dp1. Then (11.4) is preserved, in the

sensethat

ON,3
— =Nk13 for k=2,4

Op”

which is to say (11.4) holds, anddropping the bars,

ON ON
— ..........~: —

—1Y,3_ _1v23.

OP1 Op2

Becauseof this equation,we may denoteeach of its sides by f3, where this f3
may dependon all thep’s as well as t and x. So we have

ON..
(11.6) N~.=~ +f for /±i.

/ OP1 /

This relation supplements(11.4). The sum N,1~dp’ di” can be written as

N~~dp, d”=NJ~dp,d”+N,~dp2d”+...
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We takea closerlook at the dp, part of this sum:

2dp,(N~2d’
2+ N~

3d
23+ N~

3d’
3+ N~

4d
24+ N~

4d’
4+ ~

and this is, by (11.6)

2dpi(~ __L_” d/”+Efkd”).
j<k P

1 - k

Adding this to the dp2,dp3,dp4 termswehave

~ ~jk dp, d/k+2(dpjdti)fkdtk+Mo.

Let

(3=—2(dp,dt’)f~dt”.

Thisvanisheson all extremals (see(8.2)).Let

V =

Then S + (3+ d-y is of type M0, and is thus a dynamic current. This ends our

proof of (11.1).

REMARK. ElsewhereI have written down a completeproof of (11.1) for the
case of 3-dimensionalspacetime. I haveno doubtsthat the stepmissing in the

proofabove,goingfromM2 toM,, canbe constructed.
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