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Abstract. Dynamic differential forms are the natural generalization of conserved
currents. We discover the entire class for the real Klein-Gordon field, and find that
each dynamic form is equivalent to a Noetherian form, that is, a form based on a
canonical symmetry. Going to the complex case, we classify also its dynamic cur-
rents. It appears that some of them are definitely not equivalent to Noetherian
forms.

1. INTRODUCTION

An infinitesimal symmetry U of the action integral of a field theory gives
rise, via E. Noether’s theorem, to a differential form N(U) of degree 3 which
is dynamic,i.e.is locally exact on each extremal for the action.

We present here a catalog of the dynamic currents for the Klein-Gordon field.
The infinitesimal generators of the group of conformal transformations in Minko-
wski space occupy a prominent place in the description of these dynamic currents.

The main purpose of this catalog is to settle the question of whether each
dynamic form 8 coincides with or is at least equivalent in a natural way to a
Noetherian form N(U).

For the real 1-dimensional Klein-Gordon field, our catalog enables us to show
that for each dynamic form there is a Noetherian form N(U) equivalent to § in a
natural way (see below). The infinitesimal transformation (vector field) U invol-
ved preserves the (generalized) symplectic structure of a space IR? of 9 dimen-
sions, with coordinates r1, 2, t3, t* for space-time, x for the value of the field o,
and p,, . ..,p, for the values of the derivatives dy/dt', ..., dp/0t* The space-
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-time component of this vector field U has to be an infinitesimal conformal tran-
sformation.

It can be genuinely conformal for some non-linear variants of the Klein-Gordon
field, such as ¢*, or, returning to the Klein-Gordon field proper, when m = 0; but
when m % 0, then this space-time component can be at most an infinitesimal
inhomogeneous Lorentz (i.e. Poincaré) transformation.

Moreover, each such dynamic form & is naturally equivalent to a current,
where this term means a 3-form of this sort:

§=JYWdt2Ad3Adr*=J2d Ad3 A A  + .. —J*dr I AdePAdL,

having (evidently) just four components which are functions of the t! x, and
the p,.
There are two vector fields one can make using these four components of §:

0 0
JO=Jl — 4+ 4+J —
orl ort
and
0 0
JP =gl — 4 gt —
apl ap4

where p’ =g'7p].. Let ¢ be a solution of K. — G. Replace x in J® by ¢, and the
p; by dp/dt'. The exactness-on-extremals of § just says that then the divergence
of J® will vanish.

For JP a consequence of & being dynamic is that J(P is an infinitesimal
conformal transformation relative to- p,,...,p,. This property is expressed
mathematically by the system

aJ; an
— 4+ — =2ug, Gji=1,....9,
op’  ap'

where u is a modulus of conformality. The general solution here is
L . ].
J; = Py A;p'p;—A;p'p; + myp’ +up; +e¢;
and
Su=u ——Aipi

where A, ...,4,, ml.j(=—mﬁ), u,e,...,€, depend only on x and the #’s.
Indeed, A1, ..., A% depend only on the #’s, and
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A

0
Al — 44 A —
art

is the space-time component of the U mentioned earlier. The u satisfies the field
equation. (The m and 2 satisfy some other differential equations). For later
reference, we call A the derived field of J(P.

Most dynamic forms are not currents, but for each dynamic form 6, there is
a current € such that the difference 8 — € is a sum ¢ + n where { vanishes on all
extremals, and 7 is exact. Thus & is equivalent, in this natural sense, to a current.

We then show that a dynamic current e is equivalent to a Noetherian form.
This fact does not extend to the 2-dimensional, or complex, Klein-Gordon field,
where the facts are as follows. .

Let @, Y be the field components. Let p, = dp/dt', g, =3y /o' i=1,...,
4). We find that for a dynamic current in this case,

— JQ 2
=042+,

where Ji(l) is a conformal field with derived field 4, Ji(z) is a conformal field with
derived field B. JU is conformal in terms of p;s--.,p, and J@ is conformal in
terms of g, ..., q,. The term I; is bilinear in the p and q. (We give the details
below). The derived fields A and B are infinitesimal conformal transformations.
They may be different. In fact if A # B then the dynamic current is not equiva-
lent (in the natural sense) to any Noetherian form.

2. MAIN THEOREM ON DYNAMIC CURRENTS

We take IR* as our model for space-time and use £3, . . ., #% as the coordinates.
Unconventionally, but to Keep in evidence the relation to particle mechanics we

use x!, ..., x" as coordinates in the space Q in which the field has its values.
Therefore t1, ..., t% x!, ..., x" are coordinates for R* x Q.
The manifold ® in which the dynamical forms, the action form «, ... are

defined is the jet bundle J1(IR* Q) {5]. A jet can be regarded as a linear map
j from some tangent vector space T!(IR* m) in IR* to one, T1(Q, ¢)in Q; £ (j) =
= ti(m) and xk(]') = xk(q). There are more coordinates:

(xk)i(j) is the k-component of the image under j of the i-th
unit vector 8/0¢! [cfr. 1,81, k=1,...,n.

When IR* is replaced by R! then (x*), is the familiar x¥.
A 3-form § inour ¢ will be called a current, or of current type, if

Q.1 F =J1d234-—.]2d134+J3d124‘—.]4d123,
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where d?* means d#? A dr3Ade4, etc. We will omit the wedges in all cases.
We will often write § = J1d?3- . . , meaning (2.1).
In the real n-dimensional Klein-Gordon field, Q = IR"; and the extremals are
the solutions of

62 xk

(2.2) —g ———
or ot/

A Lagrangian density L for which (2.2) are the Euler equations is

1 n
(2.3) == ) [87GR), R, —m¥xky2).
> L )
Caution: Here {x"}2 is x* squared, and not perchance (x"),. with its suffix
i raised by the use of g’2. We will do that index raising very often, however.
We will eventually present a 4-form « (in Section 8 below) having the same
extremals as (2.3). We go part of the way now in order to introduce some further

notation.
We reduce the degree of this Lagrangean L by introducing new variables p,i and

k arriving at a new Lagrangean

X7,
Z[g"x x; k_m x"x"]+2pk[(xk) -x, ky

which is linear in the derivatives (x")i and has the same extremals [1, 3.4]. We
take the further step [1, Sec. 5] by restricting L* to the submanifold defined by
(the Euler equations)

(2.3.1) g"fx].k—p,;'=o
obtaining
L =—H+) plax¥,
k
where

1
=— Z [pikpk + m? xk x*].
2 %

This has the same extremals as L.
When n = 2 we simplify the notation by letting xl=xx2=y, p1 p’ p2 q.
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So
1 , , . .
L =— —2— o, +qq" + mi(x2+ y?)] +p'(x); +4'(»);
(2.4) . ;
=—H+p'(x); + ¢'(y);

where

11
(2.5) H=—pp'+ —qq + —mix2+y?).

2 2 2

NOTE: The Theorem 2.6 and those lemmas used in its proof require only that

1 o1 .
251 H= ;pip’+ ;q,.q'+h(x,y)-

The extremals of (2.4) are submanifolds of some large space, but they lie in the
submanifold defined by (2.3.1) where x,y, ¢!, ..., ¢4 Pis---sPgsqps -+ -5 44
are coordinates. These have the same transformation properties as the original
x,y,tL, .. @) (X)), M)y, - - -, (¥),- Thus the extremals can be identified
with submanifolds of J}(IR*, Q) where @ = R?, and p, taken as an abbreviation
for (x);. The currents (2.1) are 4-forms in J'(IR%, Q). The components J* are
functions of the 14 variables.

A final notation. Sometimes it will help to denote x by #°and y by t°. A sum
with Greek indices shall be understood to go from 1 to 6: a}\z"‘=a1t1 +...+
+a4t4+a5x +agy. Wealsousep, and q, and py=—1,p=0,9,=0,9,=—1.

We treat first the real 2-dimensional Klein-Gordon field because the compu-
tations can be more easily adapted to the l-dimensional case (sec. 9 below)
than the other way around.

2.6. THEOREM. The most general dynamic current
§=J1d24—g2dB3% 4

is obtainable as follows. Select functions Al, ..., A% BY L. ,B4 which depend
only on t1,t2,¢3,t*; and functions u, v which depend only on the t’s, x, and
vy such that

34, 34, (1 24" du
(2.6.1) — 4 — = —— 4+ ——)
3% otk o arf 0 ax
3B, 3B, 1 3" v
(2.6.2) — + — =28 = — + —)
ott otk 2 0! dy
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ou ov

(2.6.3) — 4+ — =0.
oy ox

Select four functions G', G2, G* G* depending only on t, ... t* x y such

that
oG*

(2.6.4) — =—uk—akH,
ox
oGk

(2.6.5) — =—vF—B*H
oy ’
aG*

(2.6.6) ? =uH_+ tu

where H = 0H/dx, etc.
Select a 2-form & in the variables x, y, t, and consider

(2.6.7) =G'd® - G213 4 G3 g1 _G4q!1B 4 d¢.

Deﬁne CMJV(___ — Cu)w = C“y)\) by

(2.6.8) ['=Ze¢, ,C*ad*
where this sum is extended over those (A, u,v,p,a,7) for which A <u<v,
p<o<rt Here Eu. =+ 1,— 1, 0 according to whether (\, yu,...,7) is an
even, an odd, or no permutation of (1,2, ..., 6).

Then let
’ I S
(2.6.9) = A'np! —p'ap + — Blaya’ —q'Big]

+up’ +vq’ + C™p,q,.

For an example, see Section 7 below.
We now present three lemmas which help in the proof of (2.6).

2.7.LEMMA. The 3-form (2.1) is dynamic if and only there exist pk(k =1,2)

such that
aJ 0J,

2.7 - =24
( . .1) 5;; apm - Ilg,,,k,



(2.7.2)

and

(2.7.3)
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¥, aJ,

— 4+ — =247,

aq aq™

3 oH dJ' oH dH oH
—t — — + — — =pl — 2 —
art  ap' ox aq' oy ax oy

2.8.LEMMA. The Ji satisfy (2.7.1) and (2.7.2) if and only if

(2.8.1)

where

(2.8.2)

(2.8.3)
(2.8.4)

S P S
Jh= ;A'p,-p’ —p'Ap + ;B’qﬂ’ —q'B;q’

+C*p.q +m®p, +n'tq +up'+vg’ + w'
71k 2 Q

these variables A, ...,w depend only on x,y,and t (meaning
...,
—mi% =, pit =

Cirk — _ clik _ oiki

2.9.LEMMA. Suppose that J' satisfies the conclusion of (2.8). Let

C]'kS - nik
Cik6 — _ ik
CI56 = wi

Then (2.7.3) will hold if and only if

29.1)

(2.9.2)

(2.9.3)

(2.9.4)

|
Ape + Ao =28 (; A tu,

|
By, +BQk=2g“(-2—B;+vy
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ac)\kS
__ . k_ pk
(2.9.5) orali v'—B*H,
aC}\kG
(2.9.6) =uk+ A*H
art *
ack56
(2.9.7) o, =uH, +vH,
aCM
(2.9.8) =0
or?

Here A4, , means aAk/at“, where of course A, =g, A", etc. Similarly, vk
means g¥™ 9v/d1™. We recall that A is summed from 1 to 6, and t5=x, t®=y.
H_is 0H/0x.

Consider the case

1
(2.9.9) hix,y) = 3 m2(x?+ y2).

When m s 0, the the equations (2.6.1)-(2.6.6) force the right hand sides of
(2.6.1, 2.6.2) to be 0, thereby limiting 4 and B to be Poincaré vector fields.
On the other hand, when m = 0, and two arbitrary conformal vector fields A
and B (see 6.1) are given, then u, v, G, . .., G* can be found satisfying (2.6.1) -
-(2.6.6). One may take u = (—\ +a;t/) x,v= (—p + b, thy, G*¥=—1/2dx2-
—-1/2 b"y2 and A as in (9.3.7) (1 and-b = 0), B analogously for a properly con-
formal solution.

3. DEDUCING (2.6) FROM THESE LEMMAS

We first assume & is dynamic and work our way to the relations (2.6.1) (2.6.8).
From (2.7) and (2.8) we have (2.8.1)-(2.8.4), (2.9.1)-(2.9.8). From (2.8.1)
and the definitions of the C's, we have (2.6.9). Properties (2.6.1) and (2.6.2)
are (2.9.1) and (2.9.2) while (2.9.3) implies that the A's and B's depend only
on the t's.

Since we are proving the converse of the statement of (2.6), we define I using
(2.6.8). We must deduce (2.6.6,2.6.3-2.6.5) as well as that those G's depend
only on t!tot®.

We abbreviate 0C***/dtf by C;**, and we abbreviate aC}*¥[at™ by Cibr.

From (2.6.8) we obtain
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(3.1) dr = C;:ss d1234 _ Ci 15 42346 C))\\IG 42345
+ Ch25 g146 _ (26 g1345
— C;‘35 d1246 + C})\‘ 36d1245
+ C; 45 41236 _ C}>\\46 q1235
+ terms of the form C} ¢k 256,
These last terms are 0 by (2.9.8). Hence
ddr = C;gs gl o C;\gs 12346 __ C;}S Q12346 C;gs (23456
+ C;16 d12345 + C)}:t136 d23456 — C;? d12346
. + C;%6 d12345 — C;\:Z;)S d12346
+C36q12%45 _ s gIBe | A6 IS

Here we have written down only those terms with d12345 12346 3ng 23456,
The coefficient of the last is

Al5 Al6
Cis +Cle -
Since this is 0 we have

acyle  act

0y ox
Thus there is an F ! depending only on ¢, x, y such that
CM6 _ a_F_l CcMl = E
A ox r 3y
We obtain F1, F2 F3 F%such that
' A ax A 3y
The coefficient of d123%° is
CMS6 4 CM6 o ONS6 i (f_k ) )
AS Ak AS 3tk \ax

Now this is zero, so
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This is also true with x replaced by y, so
aF*
(3.3) Ci%6 + Yl function of t only = p(t).
t
Now define
F= Fl d234 _ F2 d134 + F3 d124 _ F4 d123
and compute d F. Using (3.1, 3.2) and (3.3) one obtains easily that
dF = —dI" + p(t) 41234,

Hence I' = — F + d§. Putting F = — G we have (2.6.6), and also that the G's
depned only on x, y, and .
We come to (2.6.3).

by (3.2) and (2.9.6). This establishes (2.6.3). The remaining (2.6.4, 2.6.5) are
derived in the same way. Hence we have proved (2.6) in the one direction.

For proving the other direction, we assume that these A, B, ... mentioned
in (2.6) are given with the propertiesenumerated, and we must prove that § is
dynamic.

We are given that (2.6.7) holds. We compute dI" and use (2.6.4 - 2.6.6). This
tells us (2.9.5 - 2.9.8). The assumptions in (2.6) about 4, B, u, v give us (2.9.1 -
2.9.4). Then by (2.9) we obtain (2.7.3).

" We are also given (2.6.9). We define m, n, w as in (2.9); and this implies (2.8.1 -
2.8.4). Thus we have (2.7.1) and (2.7.2) also. We deduce from (2.7) that § is
dynamic.

In the course of constructing a dynamic form & according to the recipe of (2.6),
a 3-form { in the variables 7 (= t1 12 13 "), x, y is selected. This £ does not have
to be related to the other quantities (41, ..., G*).

3.4.PROPOSITION. Let & be a dynamic form involving a certain §. Let &' be
another constructed with the same A%, ..., G* but some other &, say t'. Then

8 — & =d¢' — df modulo X, Y

where (see 7.3 below).
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(3.4.1) X =dx—p,dr’
(3.4.2) Y =dy—gq,dr".
Thus 8’ — § is dynamically null (see §9). In otherwords, the arbitrariness in

£ affects 8 only by a summand which is dynamically null. To prove this, we need
only take Al= ... = G*=0 and show that the resulting & has

d=d§ modulo X, Y.

For example, let d§ = d125. Then df = —C* d1% and C¥*=—1 and C™* =
=0 for{\, u, v}#{3,4, 6} So only J3 and J* are non-zero.

J2=CMp, g, =—p,dg+ Ped, =P,
J4 = C““P,\qp= 04361’3‘16 + C463p6q3 =—p,.
Then & =p,d'?+ p,d!B = (p,d* + p,a*) a2
= (p,d! + p,d% + p;&® + p,d*) d12 = (dx — X) 12
=d2dx — Xd'? = d§ — Xd2=d¢ modulo X.

There are two other cases d¢ = d234 and d*%. In the last case, 8 = (dx — X)(dy —
— Y)d*=d*dx dy modulo X, Y as the reader may verify.

4. PROOF OF 2.7

Let € be any 4-form in our R and let U, U, Uy, Uy be four vector fields.
The evaluationonof e on U, ® ... ®U, will be denoted by

(;U,, Uy, Uy, U

It can be evaluated by forming U, e, U; JU, e, .. ., UI_JUZ_JU3JU4_I<—: =
=(e; U}, Uy, Us, U,

] 0
If U is a vector field, U= — + V — for example, then U{f] stands for

1
] ) ot ax
—f1-+V -—f—,andsoforth.
ot ox
For each i let
8 oH 9 B
(4.0.1) Us — 4 — 4 UL, — .
foarl o apl axX T K ap)

Here H might be as in (2.5), but the U,’K are just parameters.

4.1.LEMMA. Let & be a 3-form in R Then & is dynamic if and only if
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{ds, U, Uy, Uy, U, is O whenever the parameters UI’K make vanish all the expres-
sions

oH oH
(4.1.1) Uk[&g]—-%[@]
and
. AH
(4.1.2) Uy + m (sumoni; M=1,2),

provided that the rank of the Hessian matrix
02H
3pL dp}

is at least 6.

Proof. A reference to (2, 6.2] and simple computations of X*, dX?*, (see [2])
shows that the vanishing of (4.1.1) and (4.1.2) is a necessary and sufficient
condition that there should be an extremal tangent to Ul, .U & So let 6 be
dynamic. Then if (4.1.1,4.1.2) are O then <d6;U,, ..., U,» must be 0. If 6 is
not dynamic then (dé;U,,...,U,) will be not O for some four vectors
Uy, ..., U, which are tangent to an extremal and for which (4.1.1, 4.1.2) will
therefore vanish.

The 6 in this statement generalizes to 3n for n #* 2.
For the case of a current 6 (3.1),€6; U, U,, U, U, takes on the form

(4.1.3) U L7

For A as in (2.5), the expressions (4.1.1) take the form
4.1.4) Ueorr — Ui
where

Uenr = Ulna 8jo-

Hence Ui [JE ] is a linear function (call it f) of the variables U,ﬁM (or if preferable,
the Up,,) which vanishes when certain other first degree polynomials in those
variables vanish, namely the (4.1.1) and (4.1.2). Denote the latter briefl by

818y A simple convexity argument shows that there are constant (that is,
expressions independent of the U,{M) ClsvrvsCy such that f=c¢; g+ ...+
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+cpn8y- We formulate the result.

4.2.LEMMA. Let 6 be as in (3.1) and H, as in (2.5). Then & is dynamic if and
only if there are quantities Li‘{’z, ™ independent of the Uij for which

(4.2.1) U 1T = LA (U pr — Uiy + M Uy + m2x™)
and
(4.2.2) L=—1%

We do intend a sum on M, i, k, £ in (4.2.1). Item (4.2.2) is a trivial but con-
venient embellishment.

If one sets equal to O all the U,]K, then (4.2.1) reduces to (2.7.3). If one equa-
tes coefficients of U1, in (4.2.1), then one obtains

A

— K
5’;1' =48y -
X

The coefficients of Ule give

oJ. oJ
—2 4 L o
apk api

Here we assume the metric diagonal. Thus (2.7.1) is established. By interchan-
ging p and q, we also have (2.7.2) and the proof is complete.

5. APROOF OF 2.8

Let m > 3.
The significance of (2.7.1) all by itself is given by the following.

5.1. THEOREM. Let & be a symmetric, regular m xm constant matrix. Let

Jy - - .., be differentiable functions defined in R™ such that in terms of car-

tesian coordinates z1, . .., z™

0J; aJ].
(5.1.1) — + —L =2ug, Gj=1,...,m.

az/ 37! /
Then there exist constants a,, Mg, e and uwherei, j=1,...,m; my =—m; and
(5.1.2) J; = 1/2a,._z’ z].—a].z’ zi+m'.].z’+uzi+ei.

Here z; is to be interpreted by the usual rules for raising and lowering indices.
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Conversely, (5.1.2) implies (5.1.1) with
(5.1.3) w=u—a;z".
The proof of this converse is easy and need not be presented.
The proof of (5.1) begins with a lemma.
5.2.LEMMA. If (5.1.1) holds with m > 2 then the partial derivatives
%u

9zf oz’

all vanish.

Proof. We assume, as we may, that g is diagonal. From J13+J31 =0 we get

Ji33 + J33; = 0. Since J33 = ugs; we have

(5.2.1) Jyz3 + H1833 = 0.

Of course also .1'233 + Hy843= 0. From this we have Mg &3 +J2331 + J1332 +
+ 1,833 =00r 2853y, = — (J21 + J|,)33 Which is 0. Thus By, = 0.

Quoting (5.2.1) again gives 8a3ltyy = —.11331 =(— J11)33 =(— ;1gu)33 whence

So 7 is 0 and (5.2) is proved.
" So now we know u has the form (5.1.3). Define

1
—J — k k, _
Ki_"i 2aiz Z +az¥z; —uz,.

It is easy to see that

0K, 03K,

- — =0.
oz/ oz!

These equatibns (due to Killing) characterize infinitesimal isometries (in the
sense of g,.].). From this we get the rotational part my and the translational part

e.:
I
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Ki =mg zl 4 e
and (5.1) is proved.

The equations (5.1.1) characterize, and the formula (5.1.2) represents, an infi-
nitesimal conformal transformation. Thus (5.1) is an infinitesimal version of
Liouville’s theorem because it is easy to show that a vector field like (5.1.2)
is an infinitesimal similarity conjugated by an inversion (all understood in terms

of the given metric).
Let

k k k k
(5.3) Gllrs = Sﬂgrs —6r &8s _Ss 8o

Then the quadratic part of J* (note the raised index) is
1
(5.3.1) ;G’;”a’zz’zs.

When z is p or ¢ we will abbreviate

1 1
(5.3.2) 5 Gk p'pf= 3 8 p p"—p¥p, by P}
and
1
S Gua’d by 0p

We begin the proof of (2.8). From (2.7.1) and (5.1) we obtain

1 . . .
(5.4) J; = Ea,-p,-p’—pia,-p’+m,~,-p’+up,—+e,.

i

where a, m, u, e depend only on ¢, x, ¥, and unfortunately, q.

Let O be the operator g¥*92/ap* dp*. Applying it to both sides of (2.7.2)
shows that DJm also satisfies (2.7.2) although with a different u. Now [J Jm =
= 2a,, (the 2, by the way, is 2 less than the dimension of space time in general).
Then we can apply (5.1) and obtain

ak=Q’,§bQ+nkf q; + vg* + ¥
where these b, n, v, f depend only on ¢, x, y. Therefore
Ji= P,iQ’;b“ + a cubic in p and g.

By symmetry,
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J' = Q! P¥b® 4+ g cubicinp and g.
Hence P, Q¥ p* = QL P¥ c*, from which
i ~k _ i k
PGk b*=Gi PKct,

For r=1, s=2, i=3 one has G =0, so P}G%,b%=0. Thus Pihk=0

where il =b,, h?=b,, h3=h'=0. So O(PZh*¥)=0, and h = 0 whence b, =
= 0. In the same way each b% = 0, and so (5.4) holds with

(5.4.1) ak=nqui+vqk+fk.

5.5.LEMMA. These n's and v's are 0.
Note: These are not the n's and v's of (2.8.1).

We begin to prove this by a simple observation.

5.5.1. PROPOSITION. e, ...,¢e, (see 5.4) satisfy (2.7.2) with a suitable y, and so

(5.5.2) el =Qip*+v¥kq +wq' + ¢
where 8% ... pidependonlyont, x, y.
5.5.3. PROPOSITION. For each %, m™® +ug®i=1,....,4) satisfies (2.7.2)

with a suitable u and so
(554) mi2+ ugin Q;'cbﬂk+ nQik qk+ UQal' +f2i

where these coefficients depend only on ¢, x, y.

We now sketch the proof of (5.5) which is merely an exercise in algebra.
Insert (5.5.2) and (5.5.4) into (5.4) giving an expression for J; of the form

‘I/I-(P,q,n,v,f,...)z./i,

where the dots represent the coefficients of (5.5.4). We impose on J the condi-
tions (2.7.2) and it tells us that for i 4, one has P*N,, + P¥N,, =0, where
Nkh = Hyp, + V8- This gives G;‘lszh + Gzlszi =0 whichfori=1and h =3
shows N23 = 0. Assuming g diagonal gives us Ry = 0 orn = 0. Then takingi =1,
h=2givesv=0.

It appears that ¥,(p,q,0,0,f,...) has no ppq terms. By this we mean
terms like

const. p; p; 4y -

Hence we may delete the ppg terms. The result is that J; has the form (2.8.1).
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We still have to show (2.7.1, 2.7.2). For the moment we can discard the u and
v terms and just decompose the m‘* into symmetric and skew parts

th — atfl +_ﬁnz'

A simple argument shows that B“‘ is a scalar matrix. A similar argument works
for n and C. Thus (2.7.1, 2.7.2) implies (2.8.1 - 2.8.4). The opposite implication
is trivial. (2.8) is proved.

6. PROOF AND DISCUSSION OF 2.9

Our proof of (2.9) consists in inserting (2.8.1) into (2.7.3), and breaking the
result up into homogeneous parts.

Looking at the ppp terms gives d4/dx = 0. Looking at the ppq terms tells
one that 34/3y = 0. Thus we have (2.9.3).

The pp terms gives (2.9.1). The pg terms gives two results: One is (2.9.4) and
the other is (2.9.8).

When equating first degree or zero degree terms, the form of u! given by
(5.1.3) comes into play. The p terms gives (2.9.6).

The g terms do not give the dual the p terms, because we are looking at (2.8.1)
and not (2.8.2). The g terms give (2.9.5).

The terms containing neither p nor g give (2.9.7). This ends our demonstration
of (2.9).

One should appreciate the meaning of (2.9.1 - 2.9.3).

6.1 PROPOSITION. A and B are infinitesimal conformal vector fields in space-
-time. They are independent of the field (x, y).

(2.9.1) is an instance of (5.1.1), so the Ai must be of the form (5.1.2) where the
coefficients are constants (and z is replaced by ¢. The coefficients appearing in
the (5.1.2) representation of A; should not be confused with the a, m, u, e ap-
pearing elsewhere, such as in (5.4). The latter need not be constant and generally
depend on ¢, x, ).

The emergence of these conformal vector fields A and B suggests wondering
if such fields are (intinitesimal) symmetries of the Klein-Gordon fields. We
consider this in Section 9.

7. SOME SPECIFIC DYNAMIC FORMS

7.1. PROPOSITION. Let H be as in (2.5). Select eight constants Al, . .. , A% Bl,
...,B* Let
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1 . 1 1
(7.2) J"=5Akpip’—pkAp—;m x2Ax 4 ;qu,q

1
—q*B' G5 m 2y2B*.

Then J defines a dynamic current.
1 1
To see this, let G¥=— — m2x2 4%~ 5m2y23’°. This satisfies (2.6.1 -

-2.6.6). It makes C¥56=G* and C**=0 for A, u,» not permutations of k,
5, 6, This produces a J as in (7.2).

These dynamic forms are the specimens which will provide the counterexample
to equality (1.3).

We repeat the definition of Hamiltonic forms, changing U to — U as is some-
times done. y is Hamiltonic if ¢ = ¢y + U Ja where y = —£L; a. Then dyp =
=dy +d(Uda)=—[U Jda + d(U Jo)] + d(U Ja) so

(7.3) dyp =—U lda.
If A is a Lagrangean density of the reduced type (as (2.4) is), say
A=—H+p'(x),
then A has the same extremals as the 4-form
(7.4) oa=—HdB4 + dx(pla®— p2d!*+ .. ).

This is easily seen by comparing the Euler-Lagrange-Hamilton equations [2,
p- 7; pp. 21 - 22].
An almost infallible mnemonic device is that

a=Lad® 4+ x*F,

where
(7.5) X* = dxX —(xX), dar’
and F 1, ..., F* are suitable 3-forms.

The application of this idea to the L~ (2.4) gives the a in (8.1) below.
Let us call a dynamic form 8 remotely Hamiltonic if it is a sum

(7.6) S d=p+¢+dn

where ¢ is Hamiltonic, { vanishes on all extremals, and 75 is any 2-form. Then
the question about (1.3) is answered as follows.



THE DYNAMIC DIFFERENTIAL FORMS OF THE KLEIN-GORDON FIELD, ETC. 19

7.7. THEOREM. The dynamic form (7.1) is not remotely Hamiltonic if A #+ B.

8. PROOF OF 7.7

To prove this, we must find the most general 3-form ¢ which vanishes on all
the extremals for

(8.1) a=—Hd?* 4+ dx(pld?*—p2d!¥ 4+ .. )
+dy(qla®*—q2d™+ ),

which corresponds to (2.4) (see (7.4)).
We assume H has the form (2.5) (actually, the next lemma remains true if
the m2(x2 + y2) is replaced by any analytic function of x and y).

8.2. LEMMA. Let ¢ be a 3-form which vanishes on each extremal for (8.1). Then
¢ =(dx —p,dt)® + (dy — q,dt)¥ +
+ dp,dt'@’dp; + b/dqy) + dq,dr’(c’ dp, + ¢7dq)
where ® W are 2-forms and a’,...,e! are arbitrary functions. ® does not

contain dx, and ¥ does contain dy.

Such a form certainly does vanish on every extremal because dx —p; dri,
... do[2,p. 15]

To prove (8.2) we begin with an arbitrary 3-form {. We can certainly
replace each dx by p, dt' and dy by q; dt' obtaining {' such that {' — { vanishes
on all extremals. Then we will show that ¢’ has the above form with ® = ¥ = 0.
We therefore assume

¢ = Z1d234_Z2d134 + Z3d124_Z4d123

i 7L ajk i yIK 4 4.k
+ dpiZi/kd’ +dr! Yi’.k dp} dpg

IMN 3.0 1.7 4.k
+ Wi].k dp; dpj, dpy,
L _ L KJ _ JK _ JK
where Zikj = Zi].k, Yik]. = Y,.k]. = Yi].k, etc.

Here p{ is what we abbreviated by p’ and p}is ¢°.
If ¢ vanishes on all motion then

(8.2.1) (U, U, U =0

whenever (4.1.1) holds, and U, U]., U, are any three of the four vector fields
(4.0.1). (When helpful, we may forget about (4.1.2) because the fourth vector
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field can always be adjusted to insure (4.1.2) without affecting (8.2.1)). A routine
calculation (including some raising and lowering of indices) shows that

&, U,, U,, U3> =f=—-2,+Y
where
_ K L ;M wk
(8.2.2) Y—6U1kU2QU3m WK’Z"‘!+
K 7L .
+2U%,, Us, Yig, + 2US, Z¥ 3
K gL K
+2U3, U3, Yigr + 2Up, ZRy
K /L K
+2U5, Uty YogL + 2U3, 2,
The reader will note that we wrote Ug instead of UK,.]. as in (4.14). This case
of index raising is purely typographical, but moving the i or j involves the g, .
So—Z,+ Y = 0 whenever
K _ 7K
(8.2.3) U,.j = Uﬁ.
Hence Z, must be 0 and so
(8.2.4) Zl=Zz=Z3=Z4=0.
Y does not contain Ufl.. So the U% in Y are not constrained by (8.2.3). There-
fore '

(8.2.5) Y=0 if (8.2.3) holdsfor i,j=1,2,3.

The same thing is true for the linear terms in Y. In fact, for each K the linear
terms must add up to 0. The coefficient of U’l‘1 is Z}(23, SO Z}(23 = 0. We also
see

K 72 K 71
UIZZK23 + U2l ZK31 =0

whence ZZ . = Z} 5.

Here is a simple fact. If V;‘k are defined for i, j, k (ranging from 1 to P, say)
and V]'k =Vi— V;’k= 0 when i, j, k are all distinct (no sum on i or j here) and
if V) = — V; then

V;k = 6;. v, — 8} v;.
Therefore
(8.2.6) Z;(jk= 5;. ka—ﬁjch]..
This holds for i, j, k ranging from 1 to 4 because whichever integer is not

among the i, j, k could be given the role played by 4.
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Apply the operator 3/9U {4 to the quadratic part of Y. Dismissing a factor of
2 we obtain
L y4 K 4 _
(8.2.7) U3, Y3, + U3, Yi,=0.

The coefficient of U%, must be 0, s0 Y32, = 0. Of course this implies that, Y}/, =
= 0 whenever i, j, k are distinct.
Letting U32 = U23 in (8.2.7) we note that the coefficient of U’z"3 is

43 264 _
Yim+ Yoms =0
Thus Y;:” = 22:” or YE = %’;J for any i, j, k (no sum). As with (8.2.6) we can
say
(8.2.8) Yiu= 8%Yhe — 8LV

By taking 3/dU7, and then 3/3 UZ, of the cubic terms one obtains U}, W3l% =
= 0 so that all the W are 0. Assembling {, using (8.2.6) and (8.2.8) one can easily
show that it has the form claimed in (8.2), except for the claim that & need
not contain dx, but this is easy to see and we thus end our proof of (8.2).

We will prove (7.7) only in the case of three-dimensional space-time. We will
also let the m in H be zero. (If (7.7) is proved for such a current, then it must
also be true for m # 0).

Denote the differential form derived from (7.2) by y:

ll/ — J1d23_J2d13 +J3dl2.
Let
¢ =adp, dr' +Bdq; dri+
+ (dx —pde')(Fdp, + Gqu]. +Hdt! +1dy)
+(dy —q,dr')J'dp, + K/ dg, + Lydt! + Mdx).
This ¢ is by (8.2) the most general 2-form which vanishes on all motions. We
must show that we cannot have (7.6) unless A = B in (7.2). Suppose therefore
that (7.2) holds, or rather that Y — ¢ + { = dn. Then
(8.3) dy+U_Jda+dE=0
where U is as in (7.3). Specifically, take

) ) 3 d 3
(8.4) U=G ~— +D¥ — +EX¥ — +v —+W —.
ot op aqk dx ay

Then
(8.5) dy = [(4'p’ - 4’p)dp; — A'p;dp' + (B¢’ - B/q")dq; — Bigdq'1a® +
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Here the + 4 are two more terms obtained by permuting the indices 1, 2,3
cyclically. This notation will be used often.
From

a=— ;— (Bp' +4,¢") d'B + dx(p'ad® + +)
+dy(gld®+4)
and (8.4) we obtain
(8.6) Udda=—(D'p; + E'q)) d12 +
+ (Dldx + EYdy — Vdp! —wdq') dB + +
+ (p; dp' +q; dg")(C a2 + +)
—dx[dp'(C?d3— C3d?) + +]
—dyldg*(C?d3— C3d®) + +].
Finally
(8.7 dt = (da—Ffdzvj—doq].—I{].dtf—Idy) dp; dt’
+ (dB—J’Hpi —deq]. —L;dt/ —Mdx) dg dt!
+ (dx —p; dt')(—dF/ dp, — dG/ dg, —dH, dt/ —dIdy)
+ (dy —q; dr')(—dJ/ dp, — dK7 dg, —dL; dt? —dM dx).
The sum of (8,5, 8,6, 8,7) is presumably 0. It will therefore still be 0 if we
replace dx by p; dt! and dy by g, dti. This leaves (8.5) alone, but turns (8.6)
into
(8.6%) —{(Vdpl'+ Wdql)dB + +}
+(p; dp* +q; dg')(C' A% + 4)
— p,dti[dpl(C?d® — C3d?) + dp*(C3d! — €1 d%) + dp¥(Cla? + C2a)))
—q,dt' [dg}(C?d3 — C€3d?) + dg?(C3d — C1ad?) + dg3(Cld?— C2dl)l.
It helps most for (8.7), yielding
(8.7%) (da—F7 dp; — G/ dq, — H, 4t/ —Idy) dp, d¢!
+(dg—J’ dp, — K7 dg; —L; dt/ —Mdx) dg; di’
where dx = p; dt' and dy = g, d1'.
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We observe some relations:

o ]
(8.7.1) — —F' =0,
op;
- L3 oo ou
(8.7.2) Adpt—Alpd + rory +p; -~ —H —1Iq,=0.

The first of these, for i = 1, is the coefficient of dp, dp, dt? in (8.7%), and
since (8.5, 8.6*) have no such terms, we get (8.7.1). The second relation comes
from the coefficient of dp, dr! dz2 There is actually some internal cancelling
in (8.7%).

Now we return to the sum of (8.5, 8.6, 8.7) and look for the dx dp! d¢‘ terms.
Their sum is

du o0F, .~ oH
—C%art + C}art 4+ — g dtt — — drf — — dt/
dx ar! ap!
; oF . 8J; oM .
+(pdtty — —q dt'! {— + — | |dxdp".
! ox ' ox op!
The coefficient of dx dp! d¢!is set equal to 0:
da oF| o0H, 0F aJ; oM
(8.7.3) —gy— — — — +p — +q, |\— - — | =
ax % ar apt Pax  Mlax ap!
From the coefficient of dx dp! d¢? we obtain
, oF| 0H, oF (a.ll aM)
CP—— — — +p, — +g,\— — — }=0
a2 apl "t a 2lax  ap!
Let us interchange 1 and 2 here. We obtain
oF, 0H, 0F, aJ, oM
(8.7.4) C3— — — — +p, — +4q, ———)=
arl  ap? dx dx  dp?

Now we solve (8.7.2) for H! and substitute into (8.7.3). After two applications
of (8.7.1), this changes (8.7.3) to

(aJ1 aM) a1
= l4q, — =0.
% 9x ap! 1 ap!

Thus
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aJ, oM ol
(8.7.5) —_— — — 4+ — =0.

dx op!  op!
Changing 1 to 2 in (8.6.5) and using it here gives C3 = — A3. Of course this
means C' = — A’. Interchanging x and y, p and ¢ we obtain also C¥ = —B’.
The establishes (7.7).

Conversely, when A =B, then (7.1) is remotely Hamiltonic. This follows

from (10.1) below.

9. THE ONE-DIMENSIONAL KLEIN GORDON FIELD

In contrast to the two-dimensional field just discussed, in the one-dimensio-
nal case, all dynamic forms are remotely dynamic. Before stating that result, we
enumerate the various dynamic forms. We allow a somewhat more general field,
namely that defined by

1 .
9.1) H= —z-pip'+h(x)
where 4 is any analytic function.

It will be convenient to define a 3-form to be dynamically null if it is the sum

(9.2) B+

where 8 is exact and v = (dx —p; dx?) © where © is a 2-form.

9.3. THEOREM. Consider the four cases

9.3.1) h(x)=a+bx +cx?, c#0
(9.3.2) h(x)=a +bx
(9.3.3) h(x)=a+(bx+c)?, b+0,

Where a, b, ¢ are constants, and

9.3.4) h isnotasin(93.1,9.3.2,9.3.3).
The most general dynamic current for (9.1) is

(9.3.5) JLaB4— 213 4 3128 — J4d!B 4 ¢

where € is a dynamical null-form, and
R . i oxr
(9.3.6) J'= ;A'p].p’ —p'A].p’ +up’—h(x)A’—7 a+ 7
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(9.3.7) Al = 5 a't].tf — t’a].t] + p”t]- +At! + B!

where these coefficients are constants, with p"/ = — p' and u = p — (A —a,;t")x.

The restrictions on these constants and on the functions ' of  and x depend
on the case, as follows.

b+ 2cx
2¢

pi+2¢p=0, A=al=0.

Case 9.3.1. A"=p"ft,.+b",n" =— pt, where

i ap : ap" . azp
Here p' means — and pi = — =g¥ ——— |
’ o1, NPT 507 T8 AT ark

Case 9.3.2. No restriction on the coefficients of A%, but
. ) A S
' =—p'x + da|Ntf — — al(t7)?],
2
(no sum on i intended); and p! + 3(\ —aq,;t') b = 0.

Case 9.3.3. No restrictions on A%, and

. a‘cx A B
n'=— + 4a M'—Ea'(t’)z,p=——

c(\—a;t’)
b '

b
Case 9.3.4. A'=p" 1, + b',and 0’ = 0.

The proof is based on an analogue of (2.6), which we now present. We adjust
our notation so that item (9.6.1) below corresponds to (2.6.1), and (9.6.4)
corresponds to (2.6.4), etc..

9.6. THEOREM. Let &6 =J1d2¥*—J2d1% 4 . — .. be a dynamic current.
Then there exist functions A, ... A% u of t and x where
. 34, 04, 1 34" du
(9.6.1) The A" depend only tand — + — =2g.\— — +—|;
ol ot Yl2 9r  ax

there exist functions G of t and x such that
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aG*k
(9.6.4) — =—uf—4*n'(x),
dx
aG*
(9.6.6) — =uh'(x);
ark
there exists a 3-form & in the variables t and x as well as functions CM (= — C*?,

ANu=1,2,3,4,5)0f t and x such that

14234 24134 - Ap PO
{9.6.8) G d~* —G-d +...—...+dE-Eeupr“d"T
and

N

i _ _ gi _ j i imn
(9.6.9) J' = > Apip pA].p +up’'+C p,
where pg=—1.

The proof is so much like that of (2.6) that it may be omitted. In fact, the
proof is much shorter because it ends when we get to a place corresponding to
(5.4).

The statement of (9.6) really corresponds to the converse of (2.6) since it
describes the most general dynamic current. But the converse of (9.6) is also
true.

To get from (9.6) to (9.3) we insert a lemma.

9.7. LEMMA. Conditions (9.6.1, 9.6.4, 9.6.6) imply

(9.7.1) AF has the form (9.3.7),

(9.7.2) u=p—0ox

where

9.7.3) o=\—gat

and

(9.7.4) p depends only on t.
aA*

(9.7.5) Pl

(9.7.6) Gla?#— G234+ .. — ...
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2
X
=—h(x)(A1d234——...)——2 @'d®®—.. ) +q

where
9.7.7) dn=(p'd®* — .. )dx + [4oh + (p — ox) h'] 1334,

Here p'means d3p/d 1.

An immediate consequence of (9.7.7) is
(9.7.8) pi+30h"+ (p—ox)h" = 0.

We give the proof of (9.7). (9.7.1) comes from (5.1). We now use (4.7.1) to
calculate 94%/8¢*, put it into (9.6.1) and obtain du/dx =— A +a,.t" which we
call — 0. Sou = p — ox. We define

2
X
(9.7.9) n=Gld®*— . +h(x)A'dP*—. . )+ - @a*—..)

and calculate dn. Using (9.6.4, 9.6.5) and (9.7.7) we obtain (9.7.7). Finally,
ddn = 0 gives (9.7.8).

It may be verified that the a, A, G’ etc. are uniquely determined by the given
dynamic form except for the 5. The dynamic form is represented only up to
a dynamically null addendum.

We will take £ = 0in (9.6.8). Then

9.8. Formula (9.4.2) will hold with the n' being defined by n = n* d** —n2d'* +
+ ,n3 d124 _ n4 d123 .

In fact, if £ =0 then G!d?* must be €,,,,, C1° d?*. The e-symbol is — 1 so
C¥ = —G! and the sum C'*p, in (9.6.9) reduces to CBpy=CB(—1)=GL
We use (9.7.6) to express G! in terms of nl and this gives (9.4.2) (fori =1, of
course, but that will suffice).

REMARK. Theorem (9.3) shows that in the Klein-Gordon case (Case (9.3.1)) the
vector field A corresponding to a dynamic form has to be a Poincaré field. Hence
more general conformal A do not give rise to (or originate in) Hamiltonic forms.
They are, nevertheless, symmetries of the Klein-Gordon field [3, p. 72, (4)].

Now we prove (9.3), starting with case (9.3.1). A result of (9.7.8) is 30 2¢ —
—02¢ = 0 whence 0 = 0. Thus A and the g; are 0, and pi + ph" = 0. Let
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2ex + b
7?=——_(Pld234“p2d124+...).
2c
Then
2cx+b
dn=— 5 pid!B4 4 (p1d?* — . ) dx
c

so that (9.7.7) is fulfilled. This leads to the n’ listed.

For case (9.3.2), (9.7.8) says p:: +3bo = 0. (9.7.8) is the condition that  can
be found and we have presented a rather symmetrical choice.
In case (9.3.3), (9.7.8) takes the form

pl+ (bx + ) 12b(co + bp) = 0.

Now b+#0 so co+bp =0 and p:: = 0. In fact, the former implies the latter
and makes p' = ca’/b. It is easy to verify that

cx
p=——b— @d?*—...)+4a

[ml — 0_21 (11)2J a2% §

gives a solution to (9.7.7).

In the last case, (9.3.4), we have p! + 30k’ + (p —ox)h" = 0. Let p! =¢.
Then ap;. + ¢h" = 0. If ¢ were ever non-zero, then # would be quadratic which
was excluded. So p{ =0, and 304’ + (0 — ox)h" = 0. If for any x and ¢, p — ox
were not 0, the 4’ would be a constant multiple of (p — ox)3 and this was also
excluded. Thus n = 0 satisfies (9.7.7).

10. RELATION TO HAMILTONIC FORMS

With- the 1-dimensional Klein Gordon field, (in contrast to 2-dimensional case,
(7.7)) each dynamic current is remotely Hamiltonic.

10.1. THEOREM. Let & be as in (9.6). Consider the vector field

0 9 0
U=u — + A" — +D' —
ox or! op!

where A' and u are taken from (9.6.9) and
du  aC™ 3Gy,

10.2 Di=— — pi— p —h' (x) AT + ik =
( ) ax p 7 atQ
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(no sum on i).
Let
¢ =(dx —p,dr¥) G, dt! e/

where

1
G..= —(A3p4—A4p3+C34),

—G,;,=G 27

ji ij’

1
Gl3=_ ;(AZ 4—A4p2+C24),

the sign being that of the permutation of the four indices. Then
(10.3) dé+ U _dda+d¢=0.

The proof is elementary and not too long if performed as follows. First we
write down dé and d{. Then we note that
U_lda=(— uh'—pD7)a!*
+ (- udp' + p;dp/ AN - (~udp? + p;dp/A)a* + .
+dx[(h'A'+ DY AP~ 1+
+ dx[— dpl(42d3 — 43d% + 44ad?®)
+ de(Ald34___A3dl4 + A4dl3)
_ dp3(Al d24 _A2dl4 + A4 dlZ)
+ dp4(Ald23_A2dl3 +A3d12)].
One hunts through the three expressions for the dp, d?* terms. The sum
is zero. The same is true for the dp, d'3 terms. Neither of these require the
D' in (10.2). Thus (10.3) holds as far as dp dr dt dt terms are concerned.

Then we look at the dx dp,d" terms. Typically, the question is something
like
oG
g11A2+ 2 Ead =0 ?
apl
All of these can be verified.
Next we look at dx d234. This leads to an equation which is essentially (10.2).
Finally, we examine the d123* term. Here we need (10.2), and the equation to be
verified is precisely the 1-dimensional analogue of (2.7.3) with pu! = u —p,.Ai .



30 RICHARD ARENS

This latter is the case by (5.1.3).
Thus ends our proof of (10.1). In spite of the complexity of (10.2), when ¢
is chosen as 0, the vector field U is a natural associate of the vector field

9 )
x=u —+A4" —
dx or!
in R*x R. As explained in [7], 3 induces, or can be lifted up to, a vector field
x 1 in the bundle J1(IR%, B). Our U is nothing but this lift of x. We will give the
proof elsewhere.
Could it be that §, being dynamic, is automatically Hamiltonic? The calcula-
tions used in verifying (10.1) can be adapted to show that this is not so.

10.4 . PROPOSITION. A dynamic & need not be Hamiltonic.

To prove this first «decouple» the U from the § by putting bars over the
components of U. Suppose dé + U _Jda = 0. The dpld134 equation which we
have asked the reader to construct now reduces to —J2 —pl42=0. If this
is true then surely also —J23—p342=0 and therefore p3J'2=p'J23 This
relation implies A! = 43 = 0 and so of course also 42 = 4% = 0. This need hardly
be. The 1-dimensional analogue of (7.1) is an example.

11. DYNAMIC FORMS WHICH ARE NOT CURRENTS

For the real 1-dimensional Klein-Gordon field we can say the following

11.1. THEOREM. Let & be a dynamic form. Then & differs from a dynamic cur-
rent by a dynamically null form.

11.2. COROLLARY. Let & be a dynamic form. Then & differs from a Hamiltonic
form by a dynamically null form.

Sketch of proof of 11.1. Let & be any form. Replace dx by p; dt! and thus
obtain §'. Then 8’ — & is dynamically null. Thus we may suppose that § has no
dx terms. If it is not a current then there must be terms like

dp; def di*, dp,dp; dr*, or dp,dp;dp,.
The proof begins by showing that, if § is dynamic and has terms dp dp dp,

then one can find a null-form u such that § + ¢ has no such terms. This step
is rather easy.
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6= L'dp?dp3dp* — L2dp' dp3dp* + L3dp! dp?dp*
— L*dptdp? dp3 +M,
where M, is the sum of the terms with at most two dp's. Then
- 1 4
dé =Adp'...dp" + M,,

where X\ = 8L/ap’.
Now we form (d$; U,, U,, U,, U,?» =f with the intent of using (4.1). In fact

- i rri k8
f=Neu U1 UL USUL + 1
where f, has terms at most of degree 3 inthe U ;( .

Let us replace U: by —h’(x)—Ui—U%—Ug, and also replace U,.]. by U].I.

when i >j. Then fshould be 0. It is easy to see that
&= Nepg Uy szUlchi

should itself vanish when Ui]. = Uji and U: =— Ui — U% — Ug. We take

3g -
(6U})2 =— 2)\61’.“ Uy U3.
This shows. A = 0. This means that L' dp2dp3dp*—. .. is exact when the t's

and x are constant. So there is a 3-form 8 such that
dp=L'dpldpidp*— ...+ M,

where M, has the same meaning as before. Thus 8’ =86—dpor & — & is dynami-
cally null.

Hence we should now turn to the case where & has at most dp dp d¢ terms.
To save space we leave this case to the reader and tumn to the case

8§ =N dp* de/ dr* + M.
It gives an adequate idea of the technique (such as it is).
We can assume N,.,.k = N,.kj. Then

ON,. o
45 = —2 ap*dp’ it + M,
op*
from which
{ Y= aNiik abjk rr® yri
48, U, U,, U3, Up =f= — €™M U UL+ fy

op
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where f; means the terms of degree at most 1 in the U's. .
We replace U: by — U{ — U% — Ug and Ui]. by Uﬁ for i >j as before, and this
surely makes

N oo
(11.3) g= —— e?ikytyl
E)p‘2 ‘

identically 0. Again, we examine the equation

9%g
QU
It says
ON,os B ON, .5 o
ap! apt )

)
(11.4) Ny = 5o

whenever these 3indices are distinct.
Now we return to (11.3) and work out

o%g
— -0
oUjoU,,
Using
aU‘f 1,2 2,21
o =8lg%2+82g
12

this equation reduces to

1
AN 4oy . aN2, .\ N, AN o
3p, ap* 3p, ap* .
Here N2, = g% N._, as usual, anda—N— =g¥ a—N—
23 i23 apz ap'

We can use (11.4) twice here, since, for example N,; = ON,;/3p, and obtain

E

{...}=0

5.
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where {. ..} is the left side of the next equation.

3N, 3N,
(11.5) —= +NL+ —= —=N};=1(123)
0p, op,

where f (123) means a function of p;, p,, p; (besided the ¢ and x).
Denote

aN13 . "
—— —Nj; by Ay
op,
and define AY analogously. So
AP—-AB=£(123).

Of course, also A% —A413=7(413) and 42— A =f(243). Adding these
three we get

0=1(123) + £ (413) + f(243).
Setting p, equal to some constant gives us
F(123)=f(23)—r(13).
Hence
AB—f(13)—[4A2—f(23)]=0.

Define Ny, = N, + any integral of f(13) dp,. Then (11.4) is preserved, in the
sense that

AN,

—ap7 =Nk13 for k= 2,4
which is to say (11.4) holds, and dropping the bars,

Mo g2
ap,

Because of this equation, we may denote each of its sides by f;, where this f;
may depend on all the p's as well as ¢ and x. So we have

. AN
(11.6) Niy=— +f for j+#i.
ap;

This relation supplements (11.4). The sum Ni].k dp’ d’¥ can be written as
Nidp, d’* =N dp d/* + NZ dp,d™* +... .
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We take a closer look at the dp, part of this sum:
1 412 1 423
2dp, (N1, d" + N3, d% + N1, dB + N, d** + N}, a1 + NL, a3
and this is, by (11.6)

N,
2dp1( Z .a_l d1k+zf}cd1k)‘
k

J<k D, .
Adding this to the dp2 »dp,, dp4 terms we have

aNjk )
§= —= dp; d’* + 2(dp, dt’) f, dr* + M,,.
i

Let

=—2(dp, dt') f, dr*.
This vanishes on all extremals (see (8.2)). Let

- 13

v= Njk d’*,

Then & + § + dv is of type M, and is thus a dynamic current. This ends our
proof of (11.1).

REMARK. Elsewhere 1 have written down a complete proof of (11.1) for the
case of 3-dimensional space time. I have no doubts that the step missing in the
proof above, going from M, to M,, can be constructed.
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